

System Engineering for manufacturing A product line approach

Khalid KOUISS

1	Faurecia group & Frames division of Automotive seating
2	System Engineering for manufacturing
3	Product line approach
4	Changeability management
5	Conclusion

Faurecia group

Business Unit : Faurecia Automotive Seating

World's sixth largest automotive supplier

*including €13.7 billion of product sales

Faurecia Automotive Seating

#1 worldwide in mechanisms & seats structure#3 worldwide in complete seats

Frames division | References

SEATING

Why System Engineeing for manufacturing?

Exemples of equipements

Press cells with automatic loading and unloading

Laser welding cells

Automatic Assembly lines

Manual assembly lines

How to deal with the complexity of manufacturing systems

Definition of complexity

A complex system is composed of numerous entities with many interactions between each other, which makes impossible for an external observer to forecast the reaction and the future behavior.

A production cell

A complete production line

IT system in the plant

Challenges

Manage the complexity of engineering : Functional, Structural and Organizational:

- Requirements from many stakeholders
- Many engineers and experts
- Many scientific domains
- Limited budgets

How to deal with the complexity of manufacturing systems

Context:

- Machines are more complex : need to manage a high level of diversity and be more agile and adaptable
- The software part of machines is more and more important (PLCs, Robots, HMI, networks, analytics, etc.)
- With Digital transformation and Industry 4.0 the machines are considered as subsystems of the global system of the plant
- The classical methods present some weakness to deal with the high complexity

Response:

System Engineering approach and product line concept

Objectives :

- Improve engineering efficiency
- Better quality of systems: Integration, seamlessness, coherency, traceability
- Early validation
- Collaborative engineering
- Best practices & know-how capitalization
- Create a standard modules and subsystems

System Engineering for Advanced Manufacturing

SEATING

MBSE (Model Based System Engineering) :

- Papyrus + Majic Draw

Requirements Management:

- ALM Polarion

Simulation and digital twins :

- Visual Components, Delmia, Process Simulate
- Development of a library of standard components and templates of our machines and production lines

PLM :

- Build with Dassault System solutions

Implementation in the ALM

- The ALM supports the engineering stages
- Creation of templates for typical development projects

Product line approach to respond to changeability requirements

- Capability of the system to adapt itself to changing circumstances (over time)
- Capability of the system to be installed in different contexts (different places)
 - Two types of capabilities:
 - Flexibility : pre-planned capability to respond to a scope of needs with a relatively short change-over phase
 - Reconfigurability : structural capability to undergo to physical changes, in adding, removing, modifying modules. The system can go through successive reconfiguration phases

Context: Design domain activities

- Product specification
- Product design
- Process design with resource selection/design
- System design and system planning

REVIEW OF SOME DESIGN STRATEGIES

Product variety management strategies:

product family, product platform, modularity and commonality in product architecture

- Design process for reuse:
 - product line engineering
- > Enablers for changeability :

Modular, interfaceable, mobile subsystems, software configuration

CHALLENCE

How to actively support design for changeability during the whole system design process, beginning with conceptual design ?

Framework for changeability

SEATING

Design for changeability

1. Requirement stereotypes for changeability :

<product change="" family="" stereotype=""></product>	
<product change="" stereotype="" variant=""></product>	
<product change="" stereotype="" volumes=""></product>	
<layout change="" stereotype=""></layout>	
<manufacturing change="" process=""></manufacturing>	
<logistic change="" process="" stereotype=""></logistic>	
<standard change="" stereotype=""></standard>	

2. Changeability strategies:

Design for changeability

- Modularity design and platform design
 - 3. Planned reuse strategy

Fixed core platform	Common core elements within any system variant of a system family
Platform modules	Modules that must be instantiated (or parameterized) in any system variant.
Platform optional modules	Available modules that can be used in any system variant without being common to all variants
Project specific modules	Specific to a custom solution, but pointed out as being reusable in any project.

4. Level of definition of modules and interfaces (generic or detailed)

Creation of specific work items for changeability in the ALM

۲

New work items to manage changeability requirements, implemented in the ALM

«block» Reconfiguration Trigger	«block» الله Reconfiguration	«block» ۲۰۰۰ «block»
properties Status: ReconfigTrigger Status Enum (D: String Title: String Description: String Priority: Integer	properties ID: String Description: String Priority: Integer Status: <undefined></undefined>	properties ID: String Title: String Description: String Priority: Integer Status: Configuration Status Enum
operations Trigger Reconfiguration()	operations @ Reconfigure()	operations
constraints	constraints	constraints

Conclusion

- Integration of System Engineering approach and the changeability management to define the product line for manufacturing
- Definition of a framework to support product line design
- Customization of SE engineering tools to support the methodology : ALM for Requirements Management and MBSE
- Applied successfully to different standard machines:
 - Presses
 - Welding cells
 - Assembly lines

Thank you

Khalid.kouiss@Faurecia.com

