

The Laws of Systems Science and Engineering: have we progressed the last 20 years?

CSDM 2019, Paris, France

Prof. Olivier de Weck Massachusetts Institute of Technology <u>deweck@mit.edu</u>

Joint work with Dr. Kaushik Sinha

SYS Journal 20th Anniversary: 2018

- Has Systems Engineering progressed at all in the last 20 years?
- What is the theoretical (scientific) basis of Systems Engineering?
- What are the Laws of Systems Science? What is the 1st Law?

Fundamental Laws in Science

- First Law of Thermodynamics
 - Conservation of Energy
 - Rudolf Clausius 1850
- Second Law of Classical Mechanics
 - Conservation of Angular Momentum
 - Leonhard Euler 1736

$$\Delta U = Q - W.$$

$$\underline{H} = \underline{T} - \underline{\omega} \times \left[\underline{I}\underline{\omega}\right]$$

• What is the conserved quantity in Systems Science?

COMPLEXITY !

Why should we care about complexity?

How do we quantify complexity?

The First Law of Systems Science ?

Structural DSM of Wright Flyer

Legend

Design Structure Matrix (DSM) – captures structure of elements of form

Norm Augustine, Augustine's Laws, 6th Edition, AIAA Press, 1997.

Functional Requirements Explosion in Aviation

Image by MIT OpenCourseWare.

F-35 JSF

What is driving this escalation of cost?

Contributors to Price Escalation from the F-15A (1975) to the F-22A (2005)

Source: DARPA TTO (2008)

Why should we care about complexity?

How do we quantify complexity?

The First Law of Systems Science?

The Structural Complexity Metric

Structural Complexity, $C = C_1 + C_2 \cdot C_3$

Complexity due to components alone (number and heterogeneity of components)

This functional form inspired by the solution of the steady-state Schrodinger equation of organic molecular systems [Gutman 1978, 2000].

Complexity due to topological formation (a scaling factor) – due to dependency structure

Complexity due to pair-wise component interactions (number and heterogeneity of interactions)

Sinha, Kaushik, and Olivier L. de Weck. "A network-based structural complexity metric for engineered complex systems." In *Systems Conference (SysCon), 2013 IEEE International,* pp. 426-430. IEEE, 2013.

System Hamiltonian and Complexity

$$\varepsilon_{\pi} = n\alpha + \beta \sum_{i=1}^{n} h_i \sigma_i \le n\alpha + \beta \underbrace{\left(\sum_{i=1}^{n} h_i\right)}_{n} \underbrace{\left(\sum_{i=1}^{n} \sigma_i\right)}_{E(A)}$$
$$\therefore \varepsilon_{\pi} \le n\alpha + n^2 \beta \underbrace{\left(\frac{E(A)}{n}\right)}_{n}$$

 $H = \alpha I_n + \beta A(G)$

 $H\psi = \varepsilon\psi$

Introduce the notion of *configuration energy*:

$$\Xi := \underbrace{n\hat{\alpha}}_{C_1} + \underbrace{m\hat{\beta}}_{C_2} \underbrace{\left(\frac{E(A)}{n}\right)}_{C_3} = C_1 + C_2 C_3$$

Use the above functional form to measure the complexity associated to the system structure - Structural Complexity of the system where α 's stand for component complexity while β 's stand for interface complexity:

$$H\psi = \varepsilon\psi \qquad C = C_1 + C_2 C_3$$
$$\left|\varepsilon_i\right| = \alpha + \beta\sigma_i; \ \varepsilon_{\pi} = \sum_{i=1}^n h_i \left|\varepsilon_i\right| \qquad = \sum_{i=1}^n \alpha_i + \left(\sum_{i=1}^n \sum_{j=1}^n \beta_{ij}\right) \left(\frac{E(A)}{n}\right) = \sum_{i=1}^n \alpha_i + \left(\sum_{i=1}^n \sum_{j=1}^n \beta_{ij}\right) \gamma E(A)$$

Human Cognitive Experiments

Molecule #10

Humans slows down with complexity

Why should we care about complexity?

How do we quantify complexity?

The First Law of Systems Science?

Topological Complexity C₃: Important Properties

Centralized Architecture \rightarrow hypoenergetic, $C_3 < 1$ Hierarchical / layered Architecture \rightarrow transitional, $1 \le C_3 < 2$

Distributed Architecture \rightarrow hyperenergetic, $C_3 \ge 2$

Trend towards more distributed architecture with higher structural complexity and significantly higher development cost^{*}. Similar trend was observed in <u>Printing Systems</u>.

1.51

1.51

1.69

1.69

388

399.6

646.8

663.94

1.29

1.33

1.66

1.66

1.10

1.14

178

181

Median

70 percentile

242

247.9

139

145

238.9

246.2

Diminishing Returns with Complexity

Three Dimensions of Complexity

NRE Cost – Non-Recurrent Engineering Cost

Implication 1: Setting Complexity Targets

Complexity budget is the level of complexity that maximizes Value !

$$P = P_{\max}\left(\frac{kC^n}{1+kC^n}\right)$$

$$NRE = aC^{m}$$

$$V = \frac{P}{NRE} = P_{\max}\left(\frac{k}{a}\right) \left[\frac{C^{(n-m)}}{1+kC^{n}}\right] = S\left[\frac{C^{(n-m)}}{1+kC^{n}}\right]$$

Value V is the ratio of Performance P over non-recurring Effort E \rightarrow what is V*?

$$C_*^n = \frac{\left(\frac{n}{m}\right) - 1}{k}; P_* = P_{\max}\left(1 - \frac{m}{n}\right)$$
$$NRE_* = a \left[\frac{\left(\frac{n}{m}\right) - 1}{k}\right]^n; V_* = S\left(\frac{m}{n}\right) \left[\frac{\left(\frac{n}{m}\right) - 1}{k}\right]^{\left(1 - \frac{m}{n}\right)}$$

Example: Complexity Target to optimize Value

Implication 2: Iso-Complexity Tradeoffs

• Once we define the level of complexity, there are different ways to distribute this total structural complexity, C into its three constituents {C₁, C₂, C₃} : *Iso-Complexity Surface*

Iso-complexity surface: n = 20 components, assuming, c_1 in [10,60]; c_2 in [12,40] and C = 100.

- Tradeoff between (i) complex components and simple architecture, or (ii) simpler components and more complex architecture.
- Choice can be made depending on complexity handling capabilities of the development organization. E.g.
 - Excellent component designers
 - Skilled Systems integrators
 - Etc ...

- CoBRA (Aerospace Corp., 2008) Complexity Index based on analysis of historical data.
- Projects that were highly complex but tried to cut development cost had high failure rates

The First Law of Systems Science: Conservation of Complexity

 $\Delta U = Q - W.$

- First Law of Thermodynamics:
 - Conservation of Energy
 - The change in internal energy ΔU is equal to the heat Qadded to the system minus the work W done by the system.
- The First Law of Systems Science:
 - Conservation of Complexity $\Delta C = \mu \Delta P \varepsilon \Delta E$
 - The change in structural complexity C of the system is equal to a proportional change in expected performance P minus the change in effort E expended by the organization

$$\varepsilon = -\frac{C^{1-m}}{2am} \qquad \mu = \frac{(1+kC^n)^2}{2PmaxknC^{n-1}(1-kC^n)}$$

Summary of key points

- YES we have progressed in the last 20 years !
- Structural complexity C of man-made systems has been increasing
- This is driven by customer needs and competition → functional performance P → structural complexity C → organizational effort E
- A rigorous measure of complexity is based on graph energy of DSM
 C = C1+ C2*C3;
 - C3: Graph Energy is a measure of topological complexity
 - Iso-complexity based budgeting with clear targets is needed
- First Law of Systems Engineering (according to de Weck-Sinha):
 - Conservation of Complexity
 - Given a set of functional requirements P, establish minimum needed structural complexity C, and calculate organizational effort E (NRE) to satisfy the first law
- Violating the first law can lead to project or system failure !

Questions?

Comments?

Structural Complexity Metric

Metric Validity: Weyuker's Criteria

• Graph Energy stands out as both computable and satisfies <u>Weyuker's criteria</u> (1998) and establishes itself as a theoretically valid measure (i.e., construct validity) of complexity.

Complexity Measure	Computability	Aspect emphasized	Weyuker's Criteria
Number of components [Bralla, 1986]	~	Component development (count-based measure)	×
Number of interactions [Pahl and Beitz, 1996]	~	Interface development (count-based measure)	×
Whitney Index [Whitney et al., 1999]	~	Components and interface developments	×
Number of loops, and their distribution []	×	Feedback effects	×
Nesting depth [Kerimeyer and Lindemann, 2011]	×	Extent of hierarchy	×
Graph Planarity [Kortler <i>et al.</i> , 2009]	~	Information transfer efficiency	×
CoBRA Complexity Index [Bearden, 2000]	V	Empirical correlation in similar systems	×
Automorphism-based Entropic Measures [Dehmer <i>et al</i> ., 2009]	×	Heterogeneity of network structure, graph reconfigurability	V
Matrix Energy / Graph Energy	~	Graph Reconstructabality	~

Example 1: Printing Engines

Complexity = 186

Complexity = 354

Complexity increase +90%

	C ₁		C ₂		C ₃		С		C _{New}
	Old	New	Old	New	Old	New	Old	New	/C _{Old}
Most Likely	110.2	169	55.68	102.78	1.36	1.804	185.93	354.42	1.9062
Mean	125.62	213.6	63.29	130.6	1.36	1.804	211.69	449.2	2.122
Median	124.47	211.84	62.46	128.62	1.36	1.804	209.42	443.88	2.12
70 percentile	127	219	65.82	134.2	1.36	1.804	216.2	461.1	2.133

 Trend towards more distributed architecture with higher structural complexity and significantly higher development cost*

Example: Cyber-Physical System

Complexity should be abstraction-Invariant

Size: 91×91

DSM attribute	Coarse Representation	Finer representation	
System size, N	50	91	
C ₃	1.3534	1.3597	

Functional Area	Coarse DSM (50x50)	Fine DSM (91x91)
ROS Assembly	4	10
Marking elements	16	38
Paper Path	7	12

Magic Number 7+/-2

- Human Cognitive Limits for Processing Information
- George Miller (1956)
- http://www.musanim.com/miller1956/

