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Axa's fizzy

1. an example of smart contract



• logs (immutably) the succession of events per product
• open_file [client buys insurance for flight xxx off-chain]
• input_arrival_time of flight xxx [settlement off-chain]

Axa's fizzy contract

insurance contract for delayed flights 
what it does (functionwise):

• autonomy: commitment of decision process

• no plausible deniability of logged items



it really “exists”



what it should be doing really!
- actual money transfers
- independent oracle(s)
- end-to-end evidential force trustable sources for TAs

certification of pipeline to code
what it could be doing:
algorithmic provisioning for refunding
cf etherisc project

semantic boxing of governance 
huge unseen problem
stable coin against risk of exchange

no PSP trust + cost

tax and consumer protection regulation



how much can a consumer make of the immutable diary

• open_file [client buys insurance for flight xxx off-chain]

• input_arrival_time of flight xxx
PB1 owner records the wrong time

A: info is public and can be contested in court

PB0 owner does not record the 
opening of a contract in the first 
place? 

A: transfer of premium conditioned 
on the contract being opened 

can only be done if the premium 
money goes to the contract in the 
first place 

PB2 owner never updates the flight status? 

A: should be a timeout clause in the contract that 
transfers the agreed sum to the consumer in that 
case (now burden of updating the status rests on the 
owner of the contract). 

with all of the above with have complete legal resource for client
we will say that the contract has perfect monitoring



2. the Szabo value equation



1. automate business agreements 
2. allow players to avoid paying 
hidden costs due to potential litigation 

monitoring and commitment

monitoring = to be sure the others are
doing what they should

The economic value of smart contracts

commitment = to punish/repair 
when they don’t



THE PROBLEM OF SOCIAL COST 15 

The reasoning employed by the courts in determining legal rights will often 
seem strange to an economist because many of the factors on which the 
decision turns are, to an economist, irrelevant. Because of this, situations 
which are, from an economic point of view, identical will be treated quite 
differently by the courts. The economic problem in all cases of harmful effects 
is how to maximise the value of production. In the case of Bass v. Gregory 
fresh air was drawn in through the well which facilitated the production of 
beer but foul air was expelled through the well which made life in the ad- 
joining houses less pleasant. The economic problem was to decide which to 
choose: a lower cost of beer and worsened amenities in adjoining houses or 
a higher cost of beer and improved amenities. In deciding this question, the 
"doctrine of lost grant" is about as relevant as the colour of the judge's eyes. 
But it has to be remembered that the immediate question faced by the courts 
is not what shall be done by whom but who has the legal right to do what. 
It is always possible to modify by transactions on the market the initial legal 
delimitation of rights. And, of course, if such market transactions are costless, 
such a rearrangement of rights will always take place if it would lead to 
an increase in the value of production. 

VI. THE COST OF MARKET TRANSACTIONS TAKEN INTO ACCOUNT 
The argument has proceeded up to this point on the assumption (explicit 

in Sections III and IV and tacit in Section V) that there were no costs in- 
volved in carrying out market transactions. This is, of course, a very un- 
realistic assumption. In order to carry out a market transaction it is necessary 
to discover who it is that one wishes to deal with, to inform people that one 
wishes to deal and on what terms, to conduct negotiations leading up to a 
bargain, to draw up the contract, to undertake the inspection needed to make 
sure that the terms of the contract are being observed, and so on. These 
operations are often extremely costly, sufficiently costly at any rate to pre- 
vent many transactions that would be carried out in a world in which the 
pricing system worked without cost. 

In earlier sections, when dealing with the problem of the rearrangement of 
legal rights through the market, it was argued that such a rearrangement 
would be made through the market whenever this would lead to an increase 
in the value of production. But this assumed costless market transactions. 
Once the costs of carrying out market transactions are taken into account 
it is clear that such a rearrangement of rights will only be undertaken when 
the increase in the value of production consequent upon the rearrangement 

plaint, if it can be called a complaint, of the invalid lady . . . was of so trifling a character, 
that . . . the Defendant's acts would not have given rise to any proceeding either at law or 
in equity" (11 Chb). 863), That is, the confectioner had not committed a nuisance until 
the doctor built his consulting room. 

Coase - The Problem of Social Cost
Journal of Law and Economics (1960) 



monitoring is easy!
off-chain

commitment
on-chain

replica protocol
fast and cheap 

completely asynchronous

punishment/deterrence (mechanism design) 
global state repair by voting 

(on authenticated replica traces) 
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replica protocol
detect

deter

punish &
repair

do not get paranoid

fast free

slow expensive

off chain

on chain

B2B risk profile



replica protocol global state repair by voting 

only pay for slow 
and expensive BC

when deterrence fails

if your co-contractants
always get sent to the BC

for punishment maybe
change partners! 
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most of the time everything is fine!



1t/min for a year = 1c/txn
at 10% saturation

EOS’ pie size is1000 tps

using a chain is many orders of magnitude more expensive/slow/fluctuating

so it makes sense to use it sparingly
and that is what the replica also is doing



our chain-side consensus
can be equipped with penalties
so that honest behaviour
is a (game-theoretic) equilibrium 
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on-chain



3. the replica protocol



we give one permissioned copy of the product to
every player - permissioned replicated product

each copy is a bona fide communicating process (cSM)

honest players run the replica protocol 

off-chain



5 A full example

We now explain the replica algorithm using a simple periodic example. As a
contract the example is not very interesting, but it will serve well as a way to
discuss some operational details of running replicas. Our processes A and B have
the following (dual) types:

IA = {a} = OB , IB = {b} = OA
QA = QB = {tt, ff}

1 let xA = ref tt in // A’s state
2 while true do
3 t-ping:
4 if (!xA = tt)
5 _b = "ping"; // A sends on b
6 xA := ff
7 or
8 t-recA:
9 if (!xA = ff)

10 let m = a_ in // A recvs on a
11 xA := tt
12 done

1 let xB = ref ff in // B’s state
2 while true do
3 t-pong:
4 if (!xB = tt)
5 _a = "pong"; // B sends on a
6 xB := ff
7 or
8 t-recB:
9 if (!xB = ff)

10 let m = b_ in // B recvs on b
11 xB := tt
12 done

Figure 6: Two processes A, B exchange messages in a cyclic fashion; their internal
states have two possible values tt and ff; the joint initial state (tt, ff) and A has the
first transition; for convenience transitions are named; those names will be used below
in notifications.

We are going to examine in detail a typical (consistent) trace of the replicated
machine associated to A and B. There are interesting points to make. But before,
we need to develop some naming conventions for channels. Original output chan-
nels are not replicated (and stay the property of their original owners) and we
may keep the same names a, b. Copies of the original input channels a, b, will be
named aA, aB , and bA, bB , where aA is A’s copy of A’s original input channel a, aB
is B’s copy of the same, etc. New channels needed for notification will be written
�A,B , �B,A; eg �A,B is used as an output channel by A to notify a transition to B,
and as an input channel by B to receive such a notification.

With these notations in place, our replicas ABA and ABB have the following chan-
nel types:

IABA = {aA,bA,�B,A}, OABA = {b,�A,B }
IABB = {aB ,bB ,�A,B }, OABB = {a,�B,A}

There is exactly one sender on each notification channel (as it should) and all
coalition members will receive (eventually) whatever is sent in this notification
channel.

The trace described in Fig. 7 (see also Fig. 8) starts with both replicas in the
initial state (tt, ff). Leader switches are indicated. Notifications are understood
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1

4

2 t-ping

3 st-ping 5 t-recB

t-ping

ping

6 t-pong

7 st-recB

t-recB

A

B

8 st-pong

t-pong

9 t-recA

pong

t-recA

10 t-recA

an example trace between honest players

broadcast semantics of inbound and outbound msgs (not shown)
a PRP is a process! 

proof of leadership (eg round robin)
loopback input semantics

red (real) msgs are ignored!
It is not important what you do - 
what matters is what you say!



{u}sA {t,{u}tA}sB osC

C
sim t’@s

{v}sim

{v}sCt’@s
{t’,{u’}rD}sC

player pov

(o�) and have to be coerced explicitly (and probabilistically) into chain form
by Nakamoto’s heaviest chain rule. Here, as we know players, we could simply
take a fixed fair infinite scheduling sequence (and possibly punish out-of-round
notifications, ie players speaking at wrong times).

Seeing that (o�) exactly says that these proofs can be used as integers, we will
sometimes simply refer to proofs of leadership as rounds.

To simplify the presentation we will suppose that there is only one coalition
and exactly one input to each transition. Extension to the multi-coalition and
multi-input cases are straightforward even if notationally a bit daunting.

We attach to any pair of players C, D in the coalition a dedicated point-to-point
channel �C,D .

During the protocol a player C can receive two other types of messages:

(m�) regular signed messages of the form {u}sA received on C’s copy of some
original input channel, with A the sender, s the round when the value was
sent, and u the value sent
(m�) noti�cations of the form {� }tB received on channel �B,C with B the
sender, t the round when the noti�cation was sent, and � the transition noti-
�ed.

Note that times indicated in a message are times of emission; the local time at
the reception of the message can be very di�erent. First, there is an arbitrary
delay before reception of a message. But even if a reception took no time at all,
the local time of the recipient may itself be behind that of the sender (in other
words the message can arrive in the future of the local player).

Here we make a key observation, namely that internal messages, that is to say
regular messages originating from within the coalition, are actually optional: if
they target processes outside of the coalition, then there is no reason to check
them (it is somebody else’s concern); if they target processes inside the coali-
tion, the recipients can predict and synthesise the message based on their own
history.

{u}sA {t}sB

C
sim t’@s

{v}sCt’@s
{t’}sC{?}so

Figure 5: Timeline of a player with: types of messages received (within coalition mes-
sages are optional); types of transitions performed: either validation or direct firing; and
types of messages sent.

During the protocol, each player keeps an annotated record of its trace (its se-
quence of transitions). This is reminiscent of reversible process calculi such as
RCCS [4]. We write �B for the current trace of player B. As in Fig. 5, the trace
carries additional information with a justification of each step: 1) if the transition
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I. Suppose A holds a current proof of leadership at time s. She selects an enabled
transition � for which she has permission, which she signs and notifies to all
concerned as {� }sA.

If no actual transition is locally enabled, no actual transition can happen until
a new leader is designated. In this case a specific notification of ‘no-transition’
is needed, so that players can advance their local time and the next leader can
become active.

II. Suppose now B holds a current notification {� }sA. There are two cases. If
� coherently extends B0s current trace �B , that is to say, 1) � does apply to
the current state of B and, 2) �B generates inputs for � using loopback input
semantics, then B advances, ie �B += � . Else B is stuck with a ‘stucky’ head � .
Whatever the outcome may be, stuck or making progress, B feeds the received � in
the cross-examination protocol, ie essentially repeats the notification to everyone
sharing the transition (more details below).

Regarding I, we note that if A were to sign on a transition {� }sA on which she
does not have permission to fire, other players will filter it out. Also since in
the protocol players are not looking at messages -sent from within- we can be
completely general about how permissions are set. They do not have to follow
the unique sender constraint (if players agree to that of course).

A small variant of II would be to send notifications for sequence of successive
transitions {�1 . . . �n}sB , provided B is allowed to do all of them. When things go
well and all notified players can advance, the complete asynchrony of the protocol
should make it rather fast, despite the fact that notifications have to be repeated
by all players and a linear number of messages (in the size of the set of players
sharing �) sent by each player to ensure consistency. Proceeding by blocks could
make communication more e�cient in actual deployments.

Another improvement of II is the following. When receiving a notification, it
may be that B is not ready yet, ie sB < s � 1, and B needs to catch up first before
being able to validate the notified transition � . But to start cross-examination,
there is no need to wait for the validation of � to be locally enabled; B can pre-
emptively search for a blame, even he has not yet validated � . This variant is
simpler to implement and even more asynchronous. This is the one we consider
henceforth.

Yet another variant concerns the case where something is wrong, and the received
notification contains a transition that does not allow B to make progress. In this
case B could enter a trace reconciliation mode by asking the sender A for its trace
�A. Suppose A obliges and returns �A� , with �A, �B of the same length (equivalent
to saying that the notification is current). If �A = �B the blame is on A for false
notification. If not, say the first point of divergence stands at t < s, then B is
looking at a blame {�1}tL from A and {�2}tL from his own trace, with L the leader
at t (it must be the same by (o�)). L cannot be B as we assume B is honest. It
may or may not be A. Anyway B has a blame, ie a double talking entity. Even if
that was going to happen anyway, provided A is honest, the variant may shorten
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cross-exam for early detection

completely asynch!



cross-examination

the wait. It may also be that A does not take on the challenge, in which case B
has a (weaker) ‘time blame’ whereby a player blocks the game.

Finally, we note that validators can advance on the faith of a notification relayed
by another validator. It does not matter who sends the notification, the leader, or
another validator. This makes it more di�cult for a potentially malicious leader
to block the system as he has to not talk to any honest player and risk being
noticed.

Blaming sub-protocol A malicious player could send di�erent notifications which
all locally look good and lead to validation. The goal of cross-examination is to
make sure that all these transitions are the same, or to be more specific to have
honest players eventually produce a blame. A very simple optimistic algorithm
with no synchronisation barrier is enough to achieve this. Here optimistic means
that players will march on before they know that there is no problem.

We write {� }A for a message authenticated by A, as before, and {� }AB for a
message authenticated first by A, then by B, etc. We elide time indications as
all interacting messages are issued in the same round. The cross-examination
protocol is as follows:4

(x�) leader A sends {� }A to all � -players
(x�) [on-line comparison] B signs and resends all values of the form {� 0}A
(simply signed), and collects all level two values of the form {� 0}AB0 (doubly
signed)
(x�) [blaming] B resends and exits if he receives any locally incoherent value

Let us denote by H the set of honest parties -ie the players that actually obey the
rules set by the protocol. If A ever sends distinct single signed values to players
in H , every honest player eventually receives both and obtains a blame for A.
To see this, pick two honest players B1, B2 (possibly equal). Suppose B1 receives
{�1}A, and B2 receives {�2}A, with �1 , �2. If B1 = B2 we are done. If not, then
B2 resends {�2}AB2 , which eventually B1 receives, thereby obtaining a blame on
A.

To doubly sign is not important for this elementary algorithm; players can simply
resend without signing. But if one is trying to assess who is honestly resending, it
can become interesting. Likewise, if players want to free up resources and close the
file, tallying up the messages becomes important. Our simple cross-examination
asynchronous mechanics work no matter how small H may be, but of course
nothing is learnt if there is only one single honest player -because in this case a
blame can only be a local inconsistency.

We also note that blames are self-verifiable. They are their own unforgeable proof
of maliciousness. It does not matter who is telling you -honest or malicious. Be-

4 We use the following consensus routine on transition notifications, but it is generic, and
only assumes authenticated senders (which we have) which can broadcast to all participants
(which we also have).
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completely asynch!
non-blocking



with types ui 2 NI�i , �i 2 NO�i , and subject to the following constraints, for all
i:

�i (ui ,qi ) = (qi+1,�i ) input/output match
��(i) = ui output/input match

where � is the �fo map which matches an endogenous input (matched within the
coalition) to its corresponding output.

Note that nothing is said about ‘dead’ or external inputs, that is inputs which
are not in Im(�), ie not matched within the coalition.

The state of a player A at any stage of our protocol is such a trace where each
transition is justified by a notification or an oracle message (see Fig. 8 for a visual
representation), together with a set of notifications and leadership proofs. It may
be that a player is stuck in the sense his notification set contains a current but
incoherent transition.

Let us call such a trace a justi�ed trace. Let us say that two such traces are
compatible if either is a prefix of the other; and let us say that the states of two
players are compatible if their traces are, and the union of their notification sets
contains no blame (of type (b�)).

We assume no cheating happens before the protocol starts, and initial states are
identical across all replicas at the outset. The correctness of the protocol can thus
be formulated as follows:

At any time, either all honest players have compatible states - or honest play-
ers will eventually discover a blame.

First it is obvious that every honest player has a proper trace (ie a valid trace
in the product process). Consider player A. When a leader, A selects a proper
transition (and notifies it) based on her predicted inputs, or she passes her turn if
no transitions is available to her. When notified, A advances only if the received �
fits �A based on her own synthesised inputs, or stops altogether if the notification
is stuckish.

Second, if any honest player has an incoherent set of notifications, then there is
already a blame discovered, and we are done.

Third, if any two players B1, B2 in H have incompatible traces (not taking into
account their possible stuck head transition �), there will be a time t in their past
where they forked, and them both being in H means that the leader L at said
t is to blame for sending di�erent notifications to our players. It could also be
that our players have already forked on the initial state, but we have supposed
otherwise. The cross-examination at t , which B1, B2 participate to will eventually
expose L by finding this blame.

Exactly the same hold if B1, B2 have di�erent stuck traces. To see this, say B1 is
stuck at s with an incoherent {�1}sL, and B2 has received a di�erent {�2}sL at same
s (again neither can be a leader at s else they would have the same � since they
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guarantee

additional local checks instead of the
loopback semantics



4. on-chain: pay, punish and repair



what to do when things go wrong

trace reconciliation (even with a 2-player contract)

on-chain

players’ claims are backed by
authenticated traces which are 
compared by the MC using its 

recipe

all traces offered by players project to
compatible sequences of leaders 

(by proof of leadership) 
hence 

forks are uniquely designating a culprit



long recipe
Namakmoto’s

short recipe

Y

X

Y

fork - unique blame to Y

all traces submitted

class of soft contracts
where repair is blind

confidentiality



+x

+y

B claims 
sum(x) - 
sum(y)

A

B

MC mother contract 
contains a conflict 
resolution recipe

If the replicande is a product (as it is 
in this example), and this product is 
permissioned in the canonical way - 
A can fork either 

i. on an A-payment (eg , give 
less in her own version than 
she is revealing) or 

ii. on a notification of a B-
payment (typically and 
symetrically, B pretends to 
pay more than he does)

In this simple contract, a fork is a 
conflict about how much one (X say) 
paid to the other - but differently to 
ordinary life, we have evidence that 
X “lied”. 

if A forks B’s trace - 
and the culprit is X we 
may keep the other 
player Y move or let 
him choose between 
the alternatives with a 
you-fork-I-choose 
recipe

[n/a to ≥ 3 players 
though]

A’s counter 
claim 
within 
\Delta

representation of  
transfer of value

semantics in terms 
of real value
claim = eval/clearance

if A extends B’s trace with X moves: 
if some X=B, B loses/ie A chooses (B hid moves 
for no good reason - perhaps trying to omit a 
payment he did!)

if all X=A; there is no interest for B to not have 
posted this additional revenue and we take A’s 
longer trace

DGP principle!

game theoretic version



https://github.com/igarnier/huxiang

(in OCaml)



collecting judiciously logs of critical transaction
can simplify and save on the

“I said, he said” game of litigation

look what happened to this 3-party contract
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