Risk Management Strategy for Uncertain Systems: Decommissioning of Fukushima Daiichi Nuclear Power Station

Presented by Akira Yamaguchi (University of Tokyo)

Research Objective

- Establishment of risk management strategy
 - Decommissioning of Fukushima Daiichi Nuclear Power
 Plant Decommissioning
- Uncertain systems
 - First of a kind / New system Little experience
 - Complex system System of systems
 - Low frequency but high consequence
 - Various types of scenarios
 - Public trust is important
- Risk understanding & management

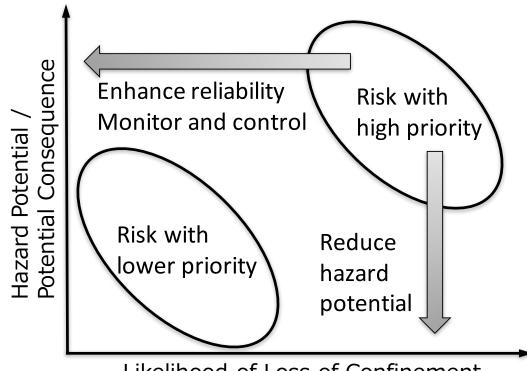
Fukushima Daiichi Accident

- The seismic-induced mega-tsunami on March 11, 2011 resulted in reactor core melt in three units of the Fukushima Daiichi Nuclear Power Station (FD-NPS)
- A few thousands of fuel assemblies were left in spent fuel pools (SFPs) of four units which reactor buildings were seriously damaged and contaminated by the release of radioactive materials and/or hydrogen explosion.
- Risks in terms of safety and security, in technological as well as social aspects

<u>Testimonies of Accident Witness</u> <u>Initiation of Nightmare</u>

- After this (around when the tsunami arrived), power lights began to flick, and then I saw they all turned off.
- The emergency power was shut off, and all of the lights on the MCR panel started to turn off. I did not know what happened however I couldn't figure out that it was caused by a tsunami.
- My fear were confirmed when operator was running into the MCR and yelling we're being flooded with sea water.

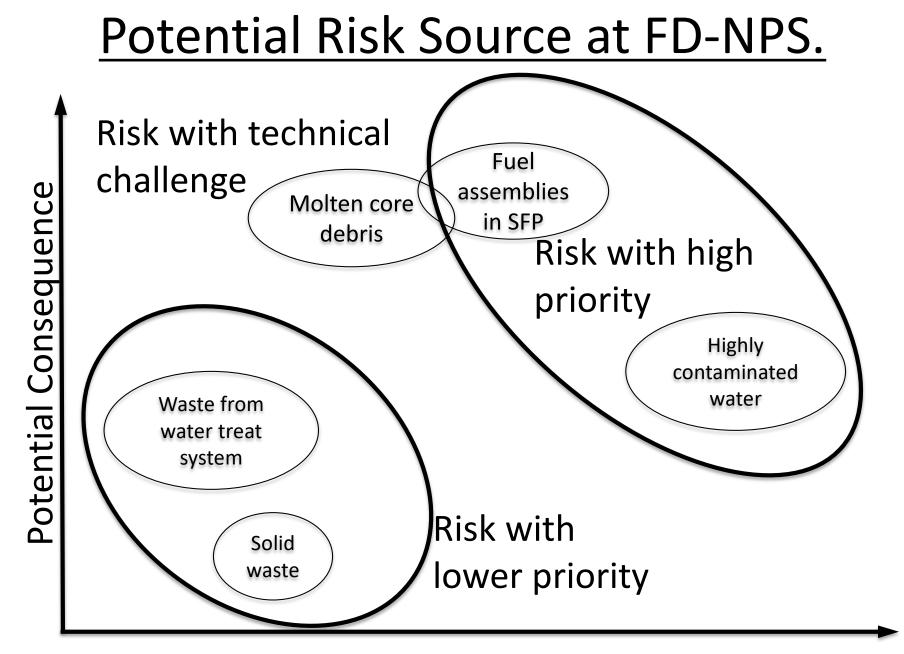
<u>Air Photo Service (March 20)</u>


Risk Management Goal

- To control and reduce the risk of the FD-NPS so that the public and workers are not exposed to significant radiation and radioactive materials are adequately confined.
- It is achieved by
 - Removal of hazard potential on the site.
 - Temporary risk increase
 - Optimized decision-making by balancing advantage and disadvantage, and cost and benefit

Risk Management in Decommissioning

- Decommissioning of the FD-NPS
 - Fuel debris in containment vessels
 - Fuel assemblies in the spent fuel pools (SFPs)
 - Contaminated water
 - Other solid wastes
- Risk characteristics are significantly different from those in an operating nuclear power plant
- Appropriate risk assessment strategy is needed
 - Understanding of the risk characteristics
 - Assigning priorities on individual tasks


Risk Reducaiton Strategy

Likelihood of Loss of Confinement

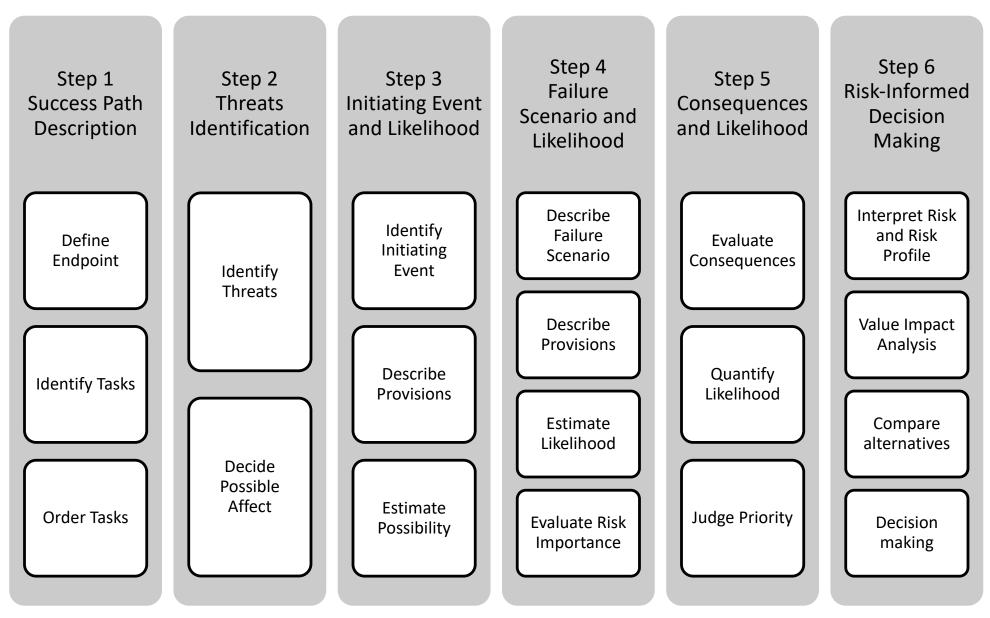
Risk with high priority

- Fuel debris
- Fuel assemblies in SFPs
- Contaminated water in buildings Risk with low priority
- Fuel in common pool/dry cask
- Solid waste
- Waste sludge, etc.

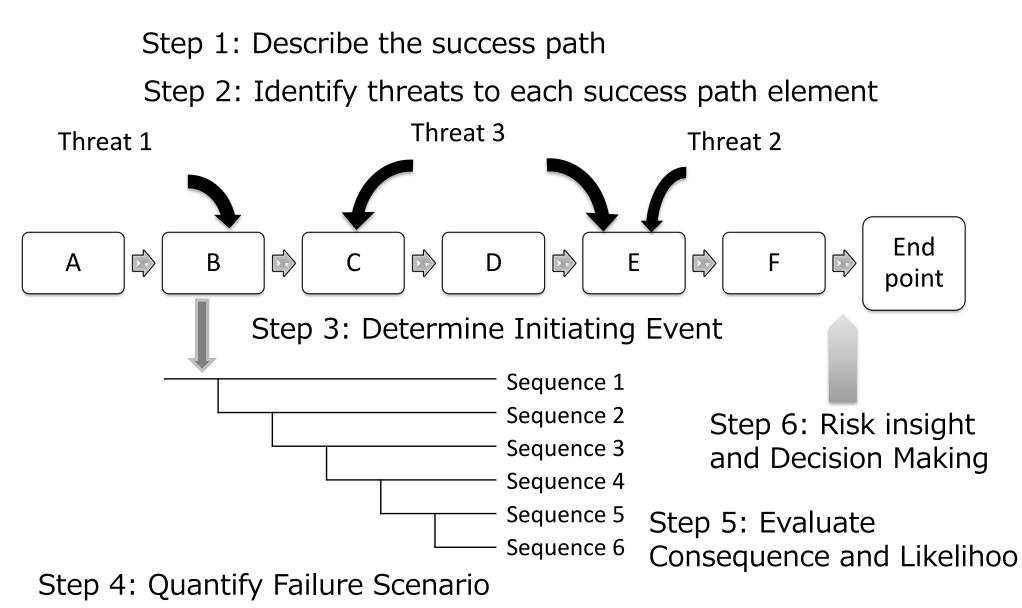
Likelihood of Loss of Confinement

Risk Metrics

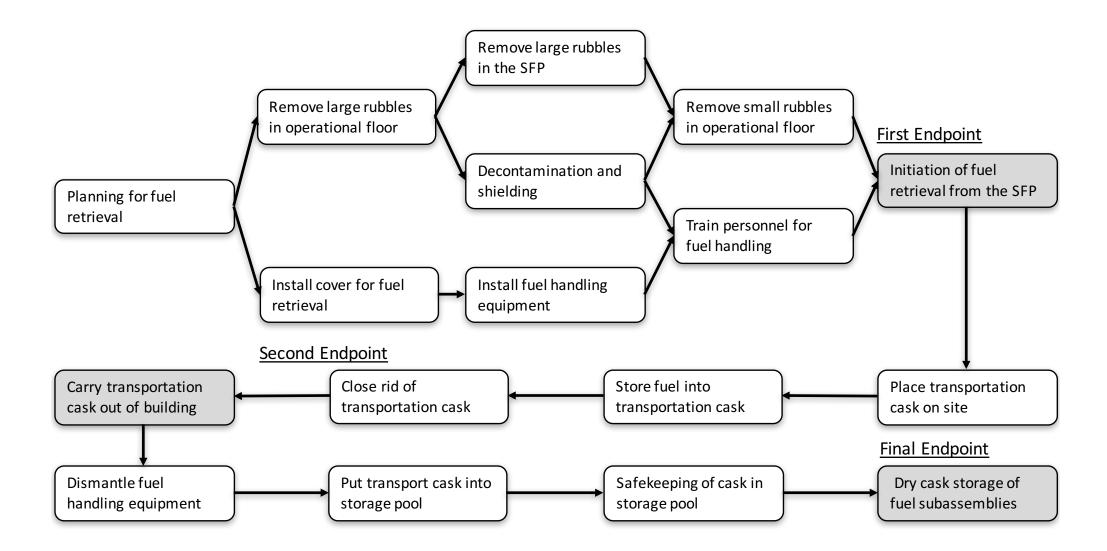
- Three risk metrics
 - Labor safety
 - Nuclear safety
 - Project accomplishment
- Different kind of risks
 - Safety and health of public and workers (technological risk)
 - Loss of public trust (societal risk)
 - Lack of financial support and delay in schedule (project risk)


Four Principles of Risk Assessment

- Comprehensiveness
 - All the possible scenarios are taken into consideration
- Efficiency
 - Risk assessment is performed with reasonable cost and resources
- Measurability
 - Risk is defined and evaluated as measurable quantities
- Effectiveness
 - Effective and practicable risk management provisions can be proposed


Definition of Endpoint

- The Technical Strategic Plan 2016 (NDF*)
 - to reduce the nuclear radiation risk continuously as well as promptly
 - to make a steady progress in decommissioning on a mid- and long-term basis"
- Five basic concepts of the decommissioning are:
 - Safety
 - Reliability
 - Efficiency
 - Promptness
 - Field-oriented


Risk Assessment Strategy

Six Steps of Risk Management

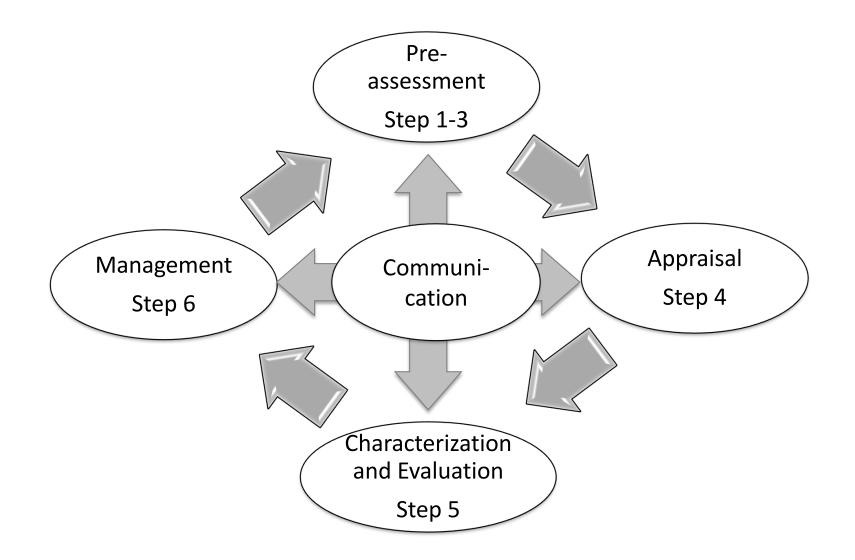
<u>Multi-Phase Process with Multiple Endpoints</u> <u>SFP Fuel Retrieval Work in Unit 3</u>

Steps 1 and 2: Combination of Success Path and Threats (Initiator)

Threat		System and Equipment Factor			Societal Factor		Management Factor
Element of success path		Random failure	Natural hazard	Human error	Public trust	Malicious activity	Project management
<u>Sub-Endpoint</u>	<u>Task</u> Transport Fuel using Fuel Handling Machine	Loss of power supply					
Fuel Retrieval from Spent Fuel Pool			Earthquake (Small)				
			Earthquake (Large)				
			Typhoon / Strong wind				
				Miss operation			
					Report minor incident		
						Sabotage	
							Lack of workers

Step 3: Identification of Initiating Events

Step 3: Initiating Event (IE Likelihood)					
Initiating Event Description	Countermeasure and Reasoning of Likelihood	Likelihood (H/M/L/VL)			
Combination of the task and threat,	Built-in countermeasures are considered. likelihood is evaluated with reason	H (high), M (medium), L (low) and VL (very low).			
possible initiating event	The reason will be used in the peer review that follows	Initiating events VL are screened out			


Step 4: Failure Scenario Evaluation

Step 4: Failure Scenario (Scenario Likelihood and Risk Importance)					
Failure Scenario	Scenario Quantification and Reasoning of Likelihood	Likelihood (H/M/L)	Risk Importance		
System failure scenario analysis	Considering mitigation measures event development (scenario) is listed up	H (high) M (medium) L (low)	H (high/unknown) L (low).		
System analysis methods (ET/FT, Graph)	Likelihood of the scenario is evaluated with reason The reason will be used in the peer review that follows	Consider mitigation measures	Failure scenarios od rank L are screened out		

Step 5: Prioritization of Failure Scenario

Step 5: Scenario Prioritization					
Consequence	Likelihood (H/M/L)	Priority			
Consequence of	Likelihood of failure	With the			
failure scenario is evaluated in detail	scenario and consequence is	consequence and likelihood,			
	evaluated in detail	priority(1-10)			
Possible measures		is determined			

Risk Governance Framework by IRGC

International Risk Governance Council, An introduction to the IRGC Risk Governance Framework, ISBN 978-2-9700772-2-0, 2012

Quantification Method

- Selection of task
 - Transport and Storage Fuel
- Selection of 10 Experts
 - 2 Utility engineers
 - 1 Regulator
 - 1 Risk analyst
 - 2 University professors
 - 2 Vendor engineers
 - 1 Decommissioning company engineer
- 118 Scenarios have been evaluated independently

Ranking 1(least importance) to 10 (highest importance)

Conclusions

- Risk management strategy for uncertain systems is proposed
 - Project goals (endpoints) and success path
 - Risk sources and threats
 - Principles and procedures of the risk assessment
 - Endpoint and risk metrics
 - Risk assessment and management procedures (Prioritization)
- The framework is applied to the decommissioning of FD-NPS