THALES

The trend towards autonomous systems

Marko Erman
Chief Technical Officer

CSD&M PARIS 2017

Significant market perspectives within a not so distant future

By 2030: Exponer

published, translated, in any way, in whole or in sent of Thales - © Thales 2015 All rights reserved

Exponential market growth

Civil applications dominating the market

Ground vehicles to outnumber aerial vehicles

Today:

Predominantly military applications

Air is the largest market with emergence of civil applications

« By 2030, the autonomy market could represent 500B€ and 20% of the overall vehicle market »

Autonomous platforms

Autonomous Underwater & Surface System

Stratobus

Understanding the Context Change

Defence systems

Multiple Innovations with
Intelligent, Autonomous,
Connected, Collaborative
'Objects', that are understandable
when analysing the
Overarching System level

Civilian applications

Space

Air

Land

Sea

From current « Decision-Aid » to future « Decision-Making »

«Autonomy is the level of independence that humans **System of Autonomous** grant a system to execute a given task systems in a stated environment.» **Autonomous systems** Partially autonomous systems "It is based on a **combination** of **sensors** and Autonomous sensors computing to navigate advanced environment and the software sophistication **Autonomous functions** necessary for machine decision-making ». The US Army Robotic and Autonomous Systems Strategy, March' 17

- Autonomy implies responsibility, partly or totally, transferred from the human to the machine and imposes strict safety and **security** rules and standards. In the **military** domain, a number of missions will remain operated with a "man in the loop".
- > 2016 Level 2 of vehicle automation is in high-end OEMs offer / Tesla cars. Full autonomy is level 5

Sub-systems

- Regulations
- Swarming (large number of cooperative drones)
- Man Machine Teaming
- C2 Station
- Safe & Secure Data Distribution
- Safe & Secure Communications
- Safe & Secure Precise Positioning & Navigation
- Sense & Avoid
- Geo-Fencing, Identification & Registration
- Generic, Overarching Architecture

Technologies

- Simulators
- Processing Computers
- Data Links
- Artificial Intelligence
- Big Data
- Decision Aid
- Sensors (radars, lidars, cameras)
- MEMS inertial systems
- Sensor Fusion & Hybridation
- Smart power management
- Safety & Validation
- Cyber security

Digital technologies (connectivity, big data, AI, cybersecurity) will play a transformational role, leading also to new business models

Beyond usual encryption, anti-intrusion, SoC, usual certification

GeoFencing, GeoCaging

- > Authentication
- Localisation integrity (antispoofing, anti-jamming, etc)
- Geo Data integrity
- > Vehicle anti tampering
- Associated regulations and laws

Certification

- > Test data, real and generated
- Learning Process and Data
- Architectural patterns
- Explainable Al
- Certification principles

With Autonomy, new challenges emerge for Cybersecurity and Safety

MAS value chain

Mission mgt + integration to CMS

Mission packages (inc payload)

Command and control (multimission & domain)

Comm network (above and below water)

Vehicle Mgt System (comm & payload)

Vehicle navigation

Vehicle control systems

Vehicle Including design

Need for a shared vision on operational needs and constraints

Train Autonomy: what's at stake?

Train Autonomy: A Step-by-step (R)evolution

Level of Autonomy Autonomous line operation Full autonomous train control Autonomous passenger protection Low speed autonomous movement Driverless GoA 4

Step 2: Disruption **Step 1: Evolution**

FULL AUTONOMY:

- Autonomy at full speed with passengers
- On-demand Train Service
- Fully automated operations both normal and hazardous situations

LIMITED AUTONOMY:

- Autonomy at limited speed, in degraded modes & in depot
- · Dynamic train service management

Unmanned Traffic Management « UTM »

Traffic projections by 2050: ~250 million hours in very low level airspace vs ~33 million hours in controlled airspace

Volume of traffic makes it impossible to rely on air traffic control principle of human air traffic controllers clearing individual aircrafts' flight plan

UTM, UAS and their operating environment

- The autonomy is a growing market ... beyond the platforms
- Autonomous systems will spread out
- Digital technology will play a key role
- New technical challenges
- New paradigm for security and safety, in particular with the advent of Al
- Issues to be tackled beyond the technical aspects: regulations & societal

