Airbus journey towards Zero emission aircraft supported by MBSE

Complex Systems Design and Management conference 16 December 2022 - Paris

Sandrine Rolland - ZeroE A/C Architect for V&V strategy Marco Ferrogalini - Head of Modelling and Simulation/MBSE - DDMS

Airbus mission

Pioneering aerospace for safe and sustainable world

Sustainability!

Airbus strong engagement to a **decarbonized future**: a new Airbus aircraft which will use hydrogen as a primary power source to be the world's first zero-emission commercial aircraft could enter into service by 2035.

Digitalization is key!

"The next generation of Airbus products will be "**digital natives**", in terms of **data generation**, **connectivity**, **end-to-end digital backbone**, to enable the design of the product, its industrial system and the support in operation"

AIRBUS

Aviation's next big challenge

Net Zero in 2050

Multiple solutions are required

Airbus is leading the journey towards clean aerospace

Source: ATAG Waypoint 2050 | Scenario 3: aspirational & aggressive technology perspective

AIRBUS AMBER

AIRBUS

Why hydrogen?

Zero emission: H_2 emits no CO_2^* & has the potential to reduce non- CO_2 emissions (i.e. NOx) & persistent contrails (*if generated from renewables via electrolysis)

Declining costs: the cost of producing H₂ is likely to decline over the next decades as it gets widely adopted by various industries. This will make zero-emission flying increasingly economical

Energy density & versatility:

H2 is 3X lighter than jet fuel but it has a lower volumetric density.

H₂ could be used as an ingredient of SAF* or directly on-board an aircraft through direct combustion or fuel cells

(*SAF = Sustainable Aviation Fuel H2 combined with captured CO_2 to produce Power-to-Liquid synthetic fuel)

AIRBUS AMBER

H₂ technology for ZEROe

Hydrogen storage at cryogenic temperature

Hydrogen fuel cells: converting energy stored in H_2 into electrical energy to power electric motors

Hydrogen combustion: generating thrust by burning hydrogen

Flight Test Demonstrators

AIRBUS AMBER

Turboprop

ZEROe aircraft

Turboprop

°n **<100** Passengers

Turbofan

<200 Passengers

AIRBUS

Digitalization is key!

"The next generation of planes will be "digital natives", in terms of data generation, connectivity, end-to-end digital backbone, to enable the design of the product, its industrial system and the support in operation"

Full 3D Digital Mockup

Virtual reality

DDMS

What's next?

AIRBUS

Airbus Digital Transformation program: DDMS

AIRBUS Digital Design Manufacturing and Services

VIRTUAL CO-DEVELOPMENT/TWINS

Rethinking the way we are designing and operating our products ensuring the co-development of the product/the industrial system/the ways to operate with customer satisfaction & services ambition at the heart of DDMS leverage advances in digital technologies

modeling standard, to enable rapid exploration

INCOSE

Visior 35

- provide seamless exchange of information with other disciplines and their tool environments
- Systems engineers partner with machines to combine creativity and automation in a robust and agile design process.

PHYSICAL EXECUTION/OPTIMISATION

MBSE to enable Multi-disciplinary optimization

For a Globally optimised product

MBSE generic pattern based on SE decomposition

- Generic breakdown structure (per cluster)
- Key parameters
- Parameters interdependencies

 Ontology (semantic model)

Requirements Mission/ Operations Functional Perfomances Logical Physical LO (SOS) L1 (SOIs) L2 (SOI Systems) L3 (Sub-Systems) L4 (Elementary Bricks)

- models (modelling approaches) for each cluster (purpose/scope)
- Which parameters are generated and consumed by each model
- toolchain architecture following the overall M&S framework

10

Same pattern applied to each logical item within the logical breakdown

Product CoDesign supported by Top Down application of Model Based System Engineering

- Common aircraft architecture (operations to be supported, definition of main interfaces)
- Collaborative design of the propulsion, H2 and non propulsive energy systems
- Continuity with behavioral models and requirements

MBSE Product to support Co-Design

A unique MBSE **referential** for the system architecture with view point and **easy navigation across views** and layers to **federate engineering work** and to enable **consistent design** across disciplines

Conclusions - key take aways

- ZEROe project ambition is to make zero-emission flight a reality. We are exploring all challenges related to hydrogen and proposing solutions at technology brick level and aircraft concept level.
- We've already made concrete steps and we rely on our Modelling & Simulations capabilities to meet our ambition!
- □ Modelling & Simulations is one of the five pillars of the Airbus Digital Transformation
- MBSE in particular is at the heart of the Airbus Digital transformation enabling consistent co-development in multi-Sol and multi-discipline to find the global technical optimum

We Make It Fly

7

the i

X

the

- 5.42