

Complex Systems Design & Management 2010

Information model for model driven safety requirements management of complex systems

Romaric GUILLERM Hamid DEMMOU *LAAS-CNRS*

Nabil SADOU SUPELEC/IETR CLD? W

General context and motivation Design framework Information model Conclusion

Outline

- General context and motivation
- Design framework
- Information model
- Conclusion

General context

- Systems more and more complex
 - \rightarrow Complex design processes
- Stronger constraints of safety (standards, certification authorities...)
- Hard competition (cost and time...)

→ Weaknesses of the current safety processes

General context

- Weaknesses of the current safety processes [Rasmussen 97]
 - Absence of a common language between the various trades involved with the system
 - Different groups need to work with different views of the system (e.g. systems engineers' view, safety engineer's view). This is a weakness if the views are not consistent.
 - Bad definition of the safety requirements and their formalization
 - Absence of traceability of safety requirements
 - Existing methods (traditional) are insufficient to deals with the complexity of the current systems

CLD8W

Motivation

• Global approach for the safety consideration is needed

- Taking into account the risks associated with the integration of the system
- Taking into account the safety requirements throughout the all lifecycle of the system
- Efficient requirements management is needed
 - Formalization of the requirements
 - Traceability management
 - Use of a common language

CD&M

General context and motivation Design framework Information model Conclusion

Propositions

- Global approach for safety
 - Well adapted framework: System Engineering
 - Objective: taking into account the safety early in the design, and in an overall study (system level)
- MDE (Model Driven Engineering) approach for a better consideration of safety requirements
 - Information model
 - Common language
 - Requirements formalization
 - Traceability and links with the rest of the design and the V&V activities

General context and motivation Design framework Information model Conclusion

Design framework

System Engineering - Definition

System Engineering is a general methodological approach that encompasses all activities appropriate to design, develop and test a system providing efficient and economical solution to client's needs while satisfying all stakeholders. [AFIS]

- A framework for the development of complex systems
- EIA-632 standard
- Methodological guide for the consideration of safety in the SE processes:
 - Processes of EIA-632 translated and refined in terms of safety

General context and motivation Design framework Information model Conclusion

Design framework

• EIA-632 standard – Processes

CLD? W

General context and motivation Design framework Information model Conclusion

Design framework

• EIA-632 standard – Requirements management

CLD8W

General context and motivation Design framework Information model Conclusion

Information model

Why?

- Make effective requirements management
- Manage requirements changes
- Help impact analysis
- Guide the design
- Evaluate project progress
- Be the basis of knowledge of the design project, proposing a shared model with a common language understandable by different persons involved in the project

CLD? W

General context and motivation Design framework Information model Conclusion

Information model

- The information model is intended to model the « system » level
- Shares the knowledge between the different trades and specialties, including the 3 components:

Requirements - Design solution - V&V

• The elements of V&V are included in the model to be directly linked to the requirements they satisfy.

General context and motivation Design framework Information model Conclusion

CD&M

Information model

- Chosen language: SysML
 - Common language
 - Allows modeling a wide range of systems
 - Good expression of requirements (with all relevant information)
 - Rigorous traceability: facilitates impact analysis (example: change of requirements)
 - Visible allocation of requirements on the model
 - Integration and association of test cases directly to the model
 - SysML extensibility (adding information about the risks and expected safety properties)

General context and motivation Design framework Information model Conclusion

CLD? W

Information model

- We have extended SysML :
 - New stereotypes for the requirements
 - New attributes for the requirements
 - Definition of a new link (*specify*) to connect the specified requirements to model elements

CLD?

General context and motivation Design framework Information model Conclusion

Information model

- We have extended SysML :
 - New block « *risk* » linked to safety requirements
 - Definition of a new link (*treat*) to connect the safety requirements to the risks that they deal

	risk
ID : Char:	string
Statment	Charstring
Assumptio	ons : Charstring
Severity :	Charstring

General context and motivation Design framework Information model Conclusion

Information model

Information model

= **meta-model** for the design of safe system

General context and motivation Design framework Information model Conclusion

Conclusion

- As part of the overall approach of safety:
 - Definition of an information model
 - Using SysML, a common language, and some extensions
 - Adapted to the EIA-632 standard
 - Integrating safety concepts (safety requirements and risks)
 - Supporting the requirements management, with a rigorous traceability between elements
 - Work in progress: An example will validate the approach
 - → S18 aircraft extracted from the ARP-4761 standard, with the consideration of the braking function and the components involved (reverses, spoilers, wheel brakes)

CLD? W

General context and motivation Design framework Information model Conclusion

Questions

guillerm@laas.fr

- The developer shall define a validated set of acquirer (other stakeholder) requirements for the system, or portion thereof.
- In the safety framework:
 - Acquirer requirements, generally, correspond to constraints in the system. It is necessary to identify and collect all constraints imposed by acquirer to obtain a dependable system.
 - A hierarchical organization associates weight to safety requirements, following their criticality.
 - Safety requirements can be derived from certification or quality requirements or can be explicitly expressed by acquirer or other stakeholder.

- The developer shall define a validated set of system technical requirements from the validated sets of acquirer requirements and other stakeholder requirements.
- Concerning safety:
 - System technical requirements traduce system performances
 - It consists on defining safety attributes (SIL level, MTBF⁽¹⁾, MTTR⁽²⁾, failure rate,...)
 - Technical requirements can be derived from a preliminary hazard analysis.
 - Some standard can help designer to define safety requirements. Example in civil aerospace sector: ARP4754 and ARP 4761.

⁽¹⁾ Mean Time Between Failure, ⁽²⁾ Mean Time To Repair

- The developer shall define one or more validated sets of logical solution representations that conform with the technical requirements of the system.
- The recommendation is to use semi formal / formal models for the solution modeling. The use of formal methods allows for automation of verification and analysis.
- In this processes, safety analysis techniques will be used to determine the best logical solution.

- The developer shall define a preferred set of physical solution representations that agrees with the assigned logical solution representations, derived technical requirements, and system technical requirements.
- The physical solution representations are derived from logical solution representation and must respects all requirements, particularly safety requirements.
- The same safety analysis may be done for the physical solution representations. The same recommendations than for logical solution remain true.

- The developer shall perform risk analyses to develop risk management strategies, support management of risks, and support decision making.
- Techniques: Fault tree ; Failure Mode, Effect, and Criticality Analysis; ...
- Determines the risks of the system
- Can generate safety requirements other than that defined by the acquirer and other stakeholders.

Requirements Validation Process **R.25 – Requirement Statements Validation**

R.26 – Acquirer Requirements Validation

R.27 – Other Stakeholder Requirements Validation

R.28 – System Technical Requirements Validation

R.29 – Logical Solution Representations Validation

- Requirements Validation is critical to successful system product.
- Requirements are validated when it is certain that they describe the input requirements and objectives such that the resulting system products can satisfy them.
- A great attention is done to traceability analysis.
- Like other requirements, safety requirements must be validated. The validation allows designing safe system.
- To facilitate this step, semi-formal solutions, like UML or SysML, can be used for good formulation of requirements.

- The System Verification Process is used to ascertain that:
 - The generated system design solution is consistent with its source requirements, in particular safety requirements.
- Some traceability models allow defining the procedure of verifying safety requirement. These procedures are planned at the definition of safety requirement.
- Simulation is a good and current method used to achieve system verification
- Other methods: virtual prototyping, model checking,...