
© 2010 /J.Printz / CSDM – Natural measure for system complexity Version V01 – Page 1

A natural measure for software system

complexity

CSDM 2010 – Parallel session 2

Jacques Printz, Professor Emeritus, Cnam

©2010 /J.Printz / CSDM – Natural measure for system complexity Version V01 – Page 2

A pragmatic definition of complexity

Project management point of view

System A is more complex than system B if

the cost to develop, maintain and operate A

is greater than the cost of B

• Development = Programming + Test (Validation and

Verification) + Documentation (Users and Maintenance)

• Maintenance = Programming (modification of an existing

code) + Test (Non regression) + Documentation (Update)

• Operate = Capacity planning and system administration, in

particular  Ways to recover a coherent state after a fault
 Maintain essential data to reconstruct a coherent state of the system

 See Autonomic computing approach and the notion of autonomic
component

©2010 /J.Printz / CSDM – Natural measure for system complexity Version V01 – Page 3

Physical / Mathematical analogy

Any program affirms something about the

validity of the transformation of an input

state into an output state

• It works like a physical law or, in some limited cases, like a

mathematical theorem
 States are related to information stored and managed by the IS

Tests of the program are like a kind of proof

• Experimental proof (scenarios, experiments) like in physics
 For example the CERN LHC (4.5 Md€) for the Higg’s boson

• Formal proof (deduction from axioms or models) like in

mathematics
 For example, around 300 pages for the demonstration of Fermat’s last

theorem (by A.Wiles)  For a one line assertion

©2010 /J.Printz / CSDM – Natural measure for system complexity Version V01 – Page 4

Measure of system complexity

using tests

 Tests take in account

• the statically aspect of programming

 Program flow graph, coverage measurement, number of instructions, …

• the dynamically aspect of data transformations and control

 Data dependencies and functional dependencies, shared data, events, ACID

transactions (i.e. modules, like in the definition given by D.L.Parnas)

 Testing activity is a dual form of programming

activity

• Result of testing activity is a set of texts, like programming :
 test programs

 test data

 Testing is now recognized as a fundamental aspect

of software system engineering

• Test driven engineering

©2010 /J.Printz / CSDM – Natural measure for system complexity Version V01 – Page 5

Cost of interface testing

The actors point of view

FBB_1
Specified

FBB_2
Specified

Programmer N°1 Programmer N°2

The architect

Specification of the

interface

Situation at specification time Situation at integration time

FBB_1
Implemented

Ready to integrate

FBB_2
Implemented

Ready to integrate

Test running of the

interface

The integration

teamDelivery

 Binary relations may be represented simply using 22 MATRIX

 But more complex relationships may exist (Ternary, ...)

Test effort

1

3

Pre-integration

Test

Keeper of

the law
Maker of the

law

Interpreter

of the law
Interpreter

of the law 2.22.1

©2010 /J.Printz / CSDM – Natural measure for system complexity Version V01 – Page 6

Programming activity : Building blocks

Functional blocks – Service blocks

1 or 2 programmers testers

Basic activities : Detailed

Design, Programming, Unit

Testing, Documentation, etc.

Building block

contract

Building block

ready to integrate

Rules to be respected are

part of the architecture

framework

The contract is under the

responsibility of the architect

Elementary pieces of

the programming

process architecture

A module according to
D.Parnas definition

Integration contract must be

validated by the integration

team before to enter in the

integration process

Average size and effort : 1-2 KSL, 2-3 M-M

Elementary work unit of the

project

(cf. Agile methods, XP, …)

Pre-integration

Test

©2010 /J.Printz / CSDM – Natural measure for system complexity Version V01 – Page 7

Testing activity

Test driven development

Module/BB under

test

Test program

N° x, y, z, …

Module/BB line

of life

Test line of

life

Begin
. . .

End

Verification of the input state

Interruption

Interruption

. . .
. . .

• Additional data on demand

AND / OR

• Verification of intermediary state

. . . Verification of the output state

I1

In

Ix
P

o
in

ts
 o

f

O
b

s
e

rv
a

tio
n

s

The Tester/Programmer

Input state

Output state

Test data

Test

expected

results

Interface

(contract)

Interactions

Result of testing

activity

©2010 /J.Printz / CSDM – Natural measure for system complexity Version V01 – Page 8

Configuration DB

Test process life cycle

The “machine” for testing

FBBs Test specification

Test execution

Comparison

Test Archive with

results

Modifications

Result analysis

Strategy

Update Update

Environment

Diagnostic

Diagnostic

Test objective

Test case

+ test data

Test expected result

Intermediary results and behavior (Test oracle)

Observed

Results and behavior

Traces

Correct Incorrect

Inductive analysis

(more data may be needed)

Deductive analysis

Score board of the N

test cases

In the test case In the program Configuration management

Sources +Tests + Documentation

Test problem solving

Set of BB and

Interfaces to test

Set-up of testing

environment

Independently

computed

Test monitoring

Testing activity

process (effort)

 Functional

 Robustness

 Performance

 Ease of use

 Etc. …

©2010 /J.Printz / CSDM – Natural measure for system complexity Version V01 – Page 9

Constructing the integration tree

The art of grouping FBB

The scale of the integration tree: FBB are grouped together to form a larger FBB of « reasonable »

size, e.g. n=72 BB  Hence the height h

n depends on the type of coupling (flow of control [synchronous/asynchronous], shared data, events)

FBB 1

FBB 2

FBB n

Interfaces

(contract)

Interfaces

(contract)

Interfaces

(contract)

… …

Integration

process
New integrated

FBB

Internal

Interfaces

(contracts)

External

Interfaces

(contracts)

n is the scale of the tree

Integration step

…

“Effort” needed for this

particular integration step

 The weight of the node

Effort to integrate the n FBB depends on the interfaces architecture of the

corresponding integration step and on the functional size of the FBB

“Size” depends on the

structure of the shared

context

The strategy of grouping is far

from being evident

 Depends on the architecture

©2010 /J.Printz / CSDM – Natural measure for system complexity Version V01 – Page 10

Width / Height of the integration tree

Root of the integration tree

(whole software system in its

real environment)

FBB_1 FBB_2 FBB_N

. . .

. . .

. . .

. . .

«
H

e
ig

h
t

»
 o

f
th

e

in
te

g
ra

ti
o

n
 t

re
e

Deliveries of BB to

the integration

team

P_1

P_…

P_h

« Width » of the integration tree : N BB at the beginning

Pre-integration

Test N° 1
Pre-integration

Test N° 2
Pre-integration

Test N° N

Entry criteria to be

integrated

SoS

System and/or

Sub-system

Application

Component

Projects

organization border

BB are grouped together to form a larger BB of

« reasonable » size, e.g. n=72 BB  Hence

the height h

 NLogh scale

 { Effort }

 { Effort }

 { Effort }

. . .

The sum of all these efforts [denoted by test length]

is a natural measure of the complexity of the system

Tree properties:

 Number of leaves (nodes)

 Number of edges

 Weight of each leaf (test specification effort / test length)

 Width and Height

System layered

architecture

©2010 /J.Printz / CSDM – Natural measure for system complexity Version V01 – Page 11

Non hierarchical coupling

Additional complexity

BB_x

System

root

BB_yBB_...

BB_...BB_...

Forbidden coupling

 covert channel

Explicit path for hierarchical

coupling

 Hierarchical complexity is the minimum complexity  Depends on number of edges

If D.Parnas modularity rules have been violated, for any reason, the effective complexity will be higher

If no rules have been specified, or if the usage of rules have not been respected (no quality

assurance, no review of interfaces, …), the effective integration complexity will be much higher :

For example, if N BB have a large shared context, each BB may interact with any other, then the

complexity will be

if the ordering is significant, then the set of parts will have to be considered

 2NO

 NO 2

©2010 /J.Printz / CSDM – Natural measure for system complexity Version V01 – Page 12

To summarize

BB_x1

System

root

BB_..

.

BB_x2 BB_xi...

Elementary integration step

TestTestTest

New test

BB_..

.
New test

BB_..

.

Test

 { Effort } = w0

Test Test

«
H

e
ig

h
t

»
 h

o
f

th
e

 i
n

te
g

ra
ti

o
n

tr
e
e

 
N

u
m

b
e

r
o

f
la

y
e

rs

« Width » w of the integration tree  Baseline effort to integrate : w0

New test

New test

Fundamental problem of the integration process:

What is the law of growth of these new tests?

From a practical point of view: how much time w0

? expressed by a Complexity Cost Function such

as :

   couplingf
wkCCF




1

0

Case 1: no coupling, FBB are totally independent

(truly transactional)

 (coupling) =0

Case 2: some coupling, Integrated FBB requires

new tests which depends linearly of w0

 (coupling) <1

 (coupling) >1

New test

Case 3: tightly coupling, FBB are dependent each

others, execution order is significant (cache effect,

context dependencies, covert channels, …); new

tests must be developed at each layer

 (coupling) = (h, w0, tree_structure, time)

 { New tests }

Cannot be avoid, if no rules have

been given and controlled

 Organizational entropy

