Formalization of an integrated system/project design framework: First models and processes

J. Abeille^{*a,b,c*}, T. Coudert^{*b*} É. VAREILLES^{*c*}, L. Geneste^{*b*}, M. Aldanondo^{*c*} and T. Roux^{*a*} ^{*a*}: Pulsar Innovation SARL - Toulouse ^{*b*}: Université de Toulouse - ENI de Tarbes ^{*c*}: Université de Toulouse - Mines d'Albi

CSDM - October 2010

1 Introduction

- 2 Background
- **3** Proposition of an integrated model
- **4** Proposition of a simple system creation process
- **5** Conclusion and further studies

1 Introduction

Work situation Industrial benchmark

2 Background

- **3** Proposition of an integrated model
- **4** Proposition of a simple system creation process
- **5** Conclusion and further studies

The problem to solve

ATLAS project situation:

- many studies about aiding system design,
- many studies about aiding project planning,
- few studies interested in the interaction between these two processes.

Decisions made in one of the two processes \Rightarrow a strong impact on the other.

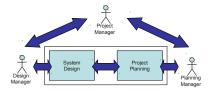
Aims of the study:

propose an integrated tool allowed to support such an integrated process and based on industrialists' requirements and needs.

Results

Companies sample:

15 enterprises of the world competitiveness cluster Aerospace Valley

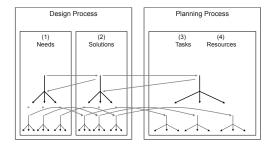

Results:

- all the interviewed enterprises are confronted to this coupling problem,
- but they do not have any specific tools to support it:
 - 50% makes integrated decisions during meetings with human interactions,
 - 22% uses procedures and standards,
 - 18% uses collaborative tools.

Integrated coupled design/project environment

Our proposition:

- three actors: project manager, planning manager and design manager,
- bijection or one-to-one mapping between system and project,
- decomposition, at the same time, of the system and of the project, depending of their complexity.


1 Introduction

- 2 Background Interaction between design and planning processes
- **3** Proposition of an integrated model
- **4** Proposition of a simple system creation process
- **5** Conclusion and further studies

Axiomatic design

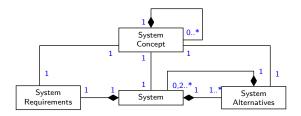
Four interacting domains (Eppinger 1991 and Suh 2001, Steward and Tate 2000: AD and Microsoft project):

- needs, requirements or specifications,
- solutions,
- tasks and activities,
- resources.

1 Introduction

2 Background

3 Proposition of an integrated model System design module Project planning module Coupling and monitoring module


4 Proposition of a simple system creation process

5 Conclusion and further studies

EIA632 - System and concept

System:

- associated to a *system concept* described by a set of variables to define the requirements and characterize the solutions (weight, cost, ...),
- composed of :
 - the system requirements,
 - one or many system alternatives

System requirements

System requirements definition:

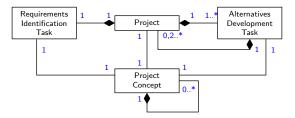
- associated to a system concept,
- composed of :
 - **needs:** expression of the stakeholders'requirements or specifications stemming from the upper level if it exists,

N1: the component C must be as light as possible

requirements: translation of the needs to a set of variables (system concept or designers' ones) and unary constraints.
R1: weight of C in [10, 20]grammes

System alternative

System alternative definition:


- associated to a system concept,
- composed of :
 - **logical solution:** description of the principles of functioning of the system and decomposition into sub-systems,
 - **physical solution:** description of the physical components needed thanks to pairs of variables (system concept or designer's ones) and values.

S1: weight of C_carbon in [10, 12]grammes

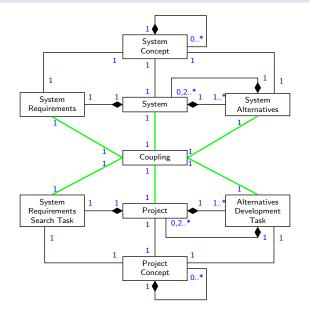
EIA632 - Project and concept

Project:

- associated to a *project concept* described by a set of variables to define the requirements and characterize the project (delay, costs, ...),
- composed of :
 - the requirements identification task,
 - one or many alternatives development tasks

Requirements identification task

Requirements identification task definition:


- associated to a project concept,
- composed of :
 - recording of the stakeholders' needs and requirements ,
 - search of the different design alternatives.

Alternative Development task

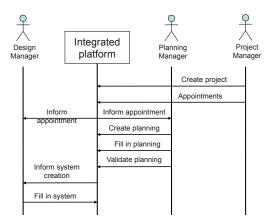
Alternative development task definition:

- associated to a project concept,
- carried out in two different ways:
 - integrated design, if the system is simple enough,
 - modular design, if the system is decomposed into sub-systems.

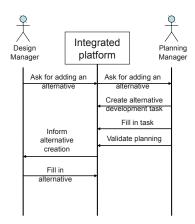
Coupling part

Monitoring part: dashboard

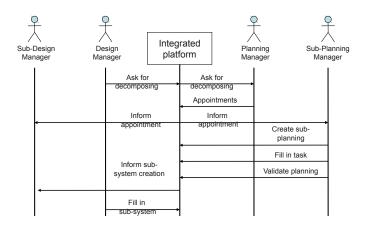
Variable	Requirement	Alternative 1	Alternative 2
Weight	R1: [10, 20]gr	S1: [10, 12]gr	S2: 18gr
Duration	d<30	40	60
Project progress	50	40	60
System project	60	80	50


1 Introduction

- 2 Background
- **3** Proposition of an integrated model


Proposition of a simple system creation process
Creation of the entities
Investigation of new alternatives
Decomposition of solutions

5 Conclusion and further studies


Ex nihilo system creation

Addition of alternatives

Splitting into sub-entities

1 Introduction

- 2 Background
- **3** Proposition of an integrated model
- **4** Proposition of a simple system creation process
- **5** Conclusion and further studies

Summary

Synthesis:

- definition of a coupling between design process and planning process based on state-of-art and industrialists' needs,
- proposition of an architecture able to support such a coupling :
 - hypothesis: bijection between system and project,
 - proposition of a UML class diagram,
- illustration of such a coupling on sequence diagram.

Perspectives:

- mock-up under development,
- proposition of new coupling types (informational one, exploiting knowledge: past cases and experts'know-how),
- validating industrial example to be done.

Formalization of an integrated system/project design framework: First models and processes

J. Abeille^{*a,b,c*}, T. Coudert^{*b*} É. VAREILLES^{*c*}, L. Geneste^{*b*}, M. Aldanondo^{*c*} and T. Roux^{*a*} ^{*a*}: Pulsar Innovation SARL - Toulouse ^{*b*}: Université de Toulouse - ENI de Tarbes ^{*c*}: Université de Toulouse - Mines d'Albi

CSDM - October 2010

Acknowledgments: The authors wish like to thank their partners in the ATLAS project, the French National Research Agency (ANR) and the 7th Strategic Activity Domain (Architecture and Integration) of Aerospace Valley for their involvement in this project.