

## A Net-based Formal Framework for Causal Loop Diagrams

<sup>1</sup>HASLab INESC TEC & University of Minho, Braga, Portugal <sup>2</sup> National Institute of Informatics, *Tokyo, Japan* 







**Universidade do Minho** 

#### Guillermina Cledou<sup>1</sup> and Shin Nakajima<sup>2</sup>

CSD&M Asia 2018

## Managing complex systems





Structure

#### Context





**Behaviour** 



## Managing complex systems





Structure

#### Context



#### Understand causal links between variables of the system



## Managing complex systems





**Structure** 

#### Context

#### Understand causal links between variables of the system









#### 

Var1 - Var2 Var2 Var1 (delay)

#### **Abstracts from quantities**

Variables only **Increase** or **Decrease** 

#### **Describes system structure**

Links' polarities: How the independent variable affects the dependent one?

#### **Brings out dynamic behaviour**





#### Reinforcing



#### Causal Loop Diagrams

#### Balancing



[C.W. Kirkwood, System Dynamic Methods]









- Complex interactions
- Informal semantics





- Complex interactions
- Informal semantics

#### **Pattern of behaviour?**







- Complex interactions
- Informal semantics

Simulation (not exhaustive)

#### **Pattern of behaviour?**







- Complex interactions
- Informal semantics

Simulation (not exhaustive)

#### **Pattern of behaviour?**



**Formal semantics** -----

Formal Analysis (exhaustive)



**Tokens** 



## **True Concurrency**

- Multiple transitions enabled
- Transitions fired one at a time

**Places** 

#### **Petri Nets**



11













## **Qualitative Abstractions**

#### Qualitative values

Variables increase or decrease

#### • Delays

Delays are qualitative

Tokens can be delayed

#### • Concurrency

Tokens are not limited resources

#### **Causal Loop Nets**









## **Qualitative Abstractions**

## **Qualitative values and non-deterministic delays**

#### Variables increase or decrease



## **Causal Loop Nets**







## **Qualitative Abstractions**

## **True concurrency and AMAN strategy**

- All enabled transitions must fire
- As many tokens as needed

## **Enabled Transitions**

All transitions with  $\{\uparrow_0,\downarrow_0\}$  in their incoming places

## **Causal Loop Nets**







Marking Graph (Semantics)

(1,0,0)  $M_0$ t1 ★ (0,1,0) t2|t3 (1,0,1) t1|t4 (0,{1,-1},0) ↓ t2|t3 (?)

16



Marking Graph (Semantics)

(1,0,0)  $M_0$ t1 ★ (0,1,0) t2|t3 (1,0,1) t1|t4 (0,{1,-1},0) ↓ t2|t3 (?)

17



Marking Graph (Semantics)

(1,0,0)  $M_0$ t1 ★ (0,1,0) t2|t3 (1,0,1) t1|t4 (0,{1,-1},0) ↓ t2|t3 (?)





Marking Graph (Semantics)

(1,0,0)  $M_0$ t1 ★ (0,1,0) t2|t3 (1,0,1) t1|t4 (0,{1,-1},0) ↓ t2|t3 (?)

19



#### Normalize Marking Graph

Marking Graph (Semantics)

(1,0,0)  $M_0$ t1 (0,1,0) t2|t3 (1,0,1) , t1|t4 (0,{1,-1},0) ↓ t2|t3 (?)





#### Normalize Marking Graph

#### Marking Graph (Semantics)







#### Normalize Marking Graph

#### Marking Graph (Semantics)







#### Normalize Marking Graph

#### Marking Graph (Semantics)







## Delays

#### Marking Graph (Semantics)

(1,0,0)

Each step is consider a **tick** Delay tokens are decreased

t1 (0,11,0) (0,1,0)

 $M_0$ 





## Delays

Marking Graph (Semantics)



Each step is consider a **tick** Delay tokens are decreased















#### **Queries on traces** (Sequence of Markings)

- How X behaves when Y satisfies some behaviour?

## **Simulation relations**

- One to one relation
- Abstract similar behaviour



Over a variable

$$\begin{split} \varphi_0(i, r, v, f) &= \bigwedge_{j=0}^{k-1} \exists s_{j+1} . \left( \sigma_i(s_j \dots s_{j+1}) . v \sim \phi_1(v, f) \right) \\ &= \exists i, r : \varphi_0(i, r, v, f) \\ \varphi_3(\varphi_1(v^m, f), v^\ell, g^\ell) \end{split}$$

 $\uparrow \downarrow \not\sim \uparrow \_ \downarrow$ 

 $\uparrow \downarrow \sim \uparrow \_ \downarrow$ 





#### **Queries on traces**

- Does a CLN exhibits a given behaviour?
- How X behaves when Y satisfies some behaviour?

## **Simulation relations**

- One to one relation
- Abstract similar behaviour

$$\uparrow^{n} \sim \uparrow$$

$$\downarrow^{n} \sim \downarrow$$

$$\{\uparrow, \downarrow\} = \sim \{\uparrow, \downarrow\}$$

#### **Analysis of Causal Loop Nets**











How Public Transport behaves when Traveling Times Increases and then Decreases?











- Informal semantics
- Difficult to analyse behaviour in complex systems
- Simulation is not exhaustive



## Wrapping up







# Thank you!