

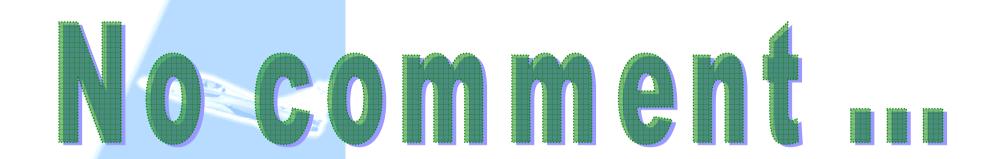
AFIS (French Council for System Engineering)

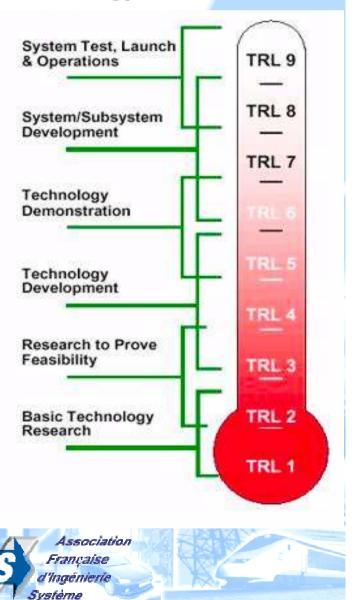
AFIS

- "Association loi 1901" (non-commercial):
 - created 1999,
 - around 500 individual members,
 - exclusiverepresentative of theINCOSE in France,
 - fosters SE within industry and academy,
 - fosters exchange around best practices and drafts standards,
 - organizes workshops and conferences.

2010... Where do we start from?

SE to avoid this!

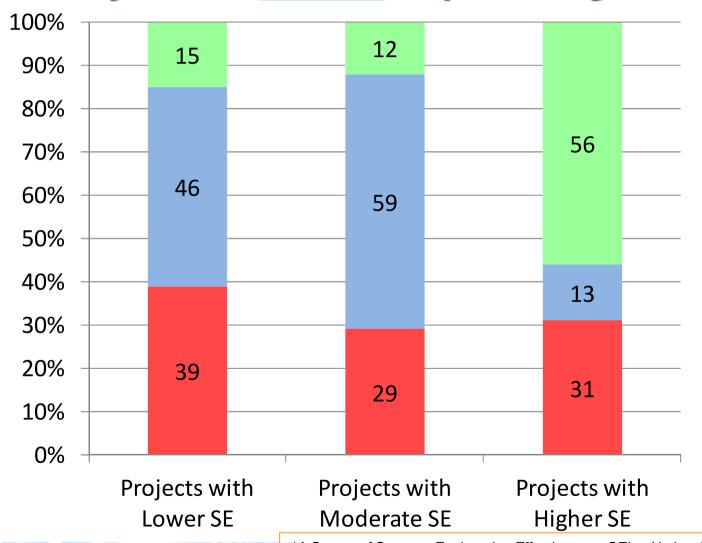






Bridging Research and Industry ... SE at the rescue!

Technology readiness levels scale



Excellence is mandatory

Project Performances vs Systems Engineering Capability*

- Higher Project Performance
- Moderate Project Performance
- Lower Project Performance

*A Survey of Systems Engineering Effectiveness, SEI et National Defense Industrial Association (Systems Engineering Effectiveness Committee), December 2008, based on 46 + 18 projects

Assessment of SE Capability based on CMMI maturity. Project Performances based on Earn Value Management Model:

Cost Performance Index, Schedule Performance Index, % Key Performance Parameters satisfied

17

Systems Engineering Workforce

(France vision)

- ✓ Systems engineering manpower: 3% to 5% of the global manpower in major companies
- ✓ A need for 3000* new SE engineers for the next 5 years in France (2009 System@tic survey)
- ✓ A discipline recently addressed by universities: less than
 100 new SE engineers per year
- ✓ SE research not yet recognized as such: strong need for industry/academia cooperation

System@tic survey identify a need of 12000 new systems engineers for the next 5 years in France including Information Systems. Hypothesis: 25% are devoted to SE only, including SWE

Systems Engineering Processes

The Generic SE approach is already available

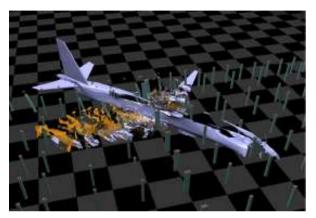
- ✓ Most mature part of SE stated in existing documents
 - **ISO** 15288
 - IEEE 1220
 - CMMI
 - INCOSE SE Handbook
 - AFIS DCIS (Découvrir et connaître l'ingénierie système)

... But further improvements are required

- ✓ SE methodology not fully actually applied
- ✓ Human factors and large-scale complex systems not enough taken into account
- ✓ Need for :
 - Business tailoring: SMEs-Small projects, Lean
 - Management involvement
 - Detailed guidelines adapted to business domain areas

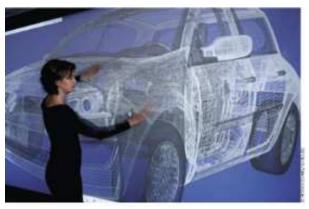
EXTERNAL DRIVERS FOR CHANGE

Business globalization


- ✓ New competitors expected from emerging countries even in complex systems (space, nuclear, aeronautics...) in the next 10 years
- ✓ International provisioning and offshore > 60% outside Europe
- √ Technology transfer becomes mandatory
- √ Cultural diversity management
- √ Still different nationwide policies

Never ending technological evolution

- ✓ High PerformanceComputing
- ✓ High Performance materials
- ✓ Grid computing
- √ Nanotechnologies
- ✓ Biotechnologies and BioInformation
- ✓ Innovate or die...

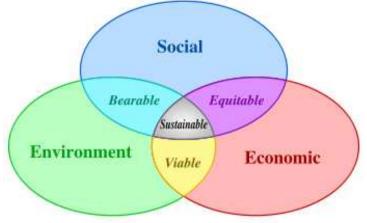

Integrating Modeling, Simulation, and Visualization - Purdue University

NBIC (nanotechnology – biology – information science convergence)

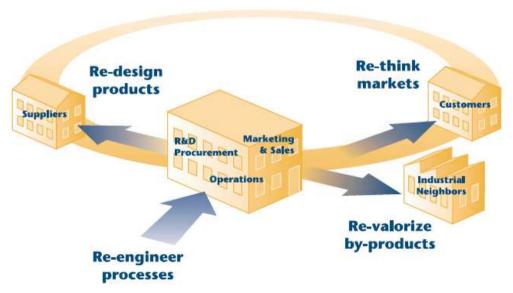
BLUE GENE/L, IBM, over 100 Teraflops

Virtual Reality, Renault

Bio Grid computing


Clean, Cost effective,

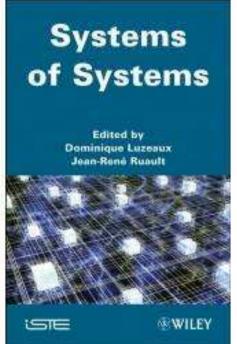
INCOSE


... Sustainable processes

- ✓ Scarcity of raw material
- **✓ Production costs increase**
- ✓ New markets are emerging
- ✓ New value creation "Eco-efficiency"
 - Reduce material intensity
 - Reduce energy intensity
 - Reduce dispersion of toxic substance
 - Enhance recyclability
 - Maximize use of renewables
 - Extend product durability
 - Increase service intensity

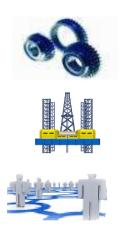
Association Française d'Ingénierie Système

NAVIGATING ECO-EFFICIENT OPPORTUNITIES


Eco-efficiency: creating more value with less impact. World Business Council for sustainable Development.

SE: Exploration of new dimensions

- ✓ Global, integrated, "system of systems"
- **✓ Quick, complex and non predicted changes**
- ✓ Focused on people, services, organizations
- √ Applied to new industrial and societal problems



SE Trends & Challenges: the way to do it!

Complexity

adaptive, dynamic & emergent

Legacy

unplanned, ill-suited

Criticality

essential to day to day life, disponibility

increase

Workforce

great cultural diversity, Internet generation

Vulnerability

increasingly
valuable, fragile and
potential
targets of
malicious attacks

Time Compression

we're all on Internet time

The 7 main challenges for SE

- ✓ Very large heterogeneous systems (legacy, technology opportunities, resilience, complexity management, connections of in-use systems, system-of-systems).
- ✓ Very large autonomous systems (autonomous decision-making, real-time control, reconfiguration, security-privacy-trust).
- ✓ Verification, validation and qualification of systems (legacy, international contexts, aggregation of complex systems).
- ✓ Modeling and simulation covering total system representation (performance, human factor, model granularity).
- ✓ Through-life knowledge management (long systems versus short technology lifecycles, information access in large distributed bases, reuse).
- ✓ Agile human-centered design (co-creative process).
- ✓ Large-scale virtual prototyping.

Agile

Allowing for quality, timely development with an incomplete and changing set of system requirements

Integrated

Part of the main development process and not an additional set of discretionary tasks.

Standard

Enabling consistency thru extended enterprise

Lean

Providing the greatest amount of benefits with the minimal number of steps and least amount of effort.

Transforming Implementable the Enabling widespread

SE Process

education and broad application.

Leveraged

Enabling exponential capability growth through leveraging of computational and information technologies

Extensible Scalable

Providing the capability to expand and enhance capabilities for future growth without having to make major changes in the infrastructure

A new culture: Risk sharing among the partners within a business domain

Risk Sharing Partners

Excellence of production

Association Francaise

- Trust
- Sharing
- Preservation of knowledge and know-how

Strategic Alliances

Keep **Simple Stupid**

The KISS principle: a universal and interdisciplinary challenge

Product / System

Process

User requirements

Functionality

Product /system complexity

Architecture

Product /system variants

Behavior

Development time

Work distribution & organization

Association Française

Variants

Multiple skills

Organization

Dimensions of complexity

What are the real needs? Will the system be understood and useable?

- Reduce the competency demand, e.g. modular architecture design
 - Deal with uncertainty, e.g. resilience engineering
 - **Design for maintainability**
- **Reduce interactive complexity design**
 - Reference architectures and design rules to simplify interactions and to reduce non-determinism,
 - Provable isolation mechanisms in time and space
 - **Verifiable and safe sharing of** services and controls
 - **Design for reuse**

Seamless SE Education & Research

– System Engineering Education :

- Pre-recruitment
- Agreements Academy-Industry on SE training, certification and curriculum
- Individual certification
- E.g.: GRCSE (Graduate Reference Curriculum in Systems Engineering under development) by INCOSE
- A way of recognition and a mobility asset
 - SE as a bridge between Technical and Non Technical disciplines; seen more and more as a key factor for wider job opportunities
- SE Company Certification :
 - Manage competitiveness and address new markets
- Upper-stream and applied research :
 - Academy-Industry link

R&T to address the 7 SE challenges	large heteroge neous systems	large autono mous systems	V V & A	covering total system	-life KM	human- centered design	scale virtual protot yping
Modeling (synthesis, analysis and inversion) -DES, hybrid systems, game theory with local feedback -Multi-scale, discrete/continuous, stochastic/deterministic, micro/meso/macro, pattern formation, morphogenesis -Systemics: coalgebras, category theory, topoi (algebraic+logic) -Parametric analysis, reverse modeling	X	X	/	X			
Automatic proof -Theories with many axioms (simplifying theories), dealing with potential inconsistencies -Parallel theorem proving -Stochastic automatic proving systems -Algorithmic complexity			X		X		
SWE: design of large-scale SW with HF -Store & search large heterogeneous databases, visualization tools -Design, architecture description languages, simulation -MDA, design patterns -MMI, models of human interaction, human stress models -Security of distributed SW: confidentiality, authentification, protection against reverse engineering	/	/			X	X	X
HW-SW co-design -Adaptive optimal allocation -Reconfigurable architectures, intensive computing	/	Х		/			Х

Very

Very

M&S

V

Agile

Large-

Thru

To conclude

