
Elements of Interaction

Farhad ArbabFarhad Arbab

Foundations of Software Engineering

Center for Mathematics and Computer Science (CWI), Amsterdam
Leiden Institute of Advanced Computer Science, Leiden University

28 October 2010
Complex Systems Design & Management
Paris, France

Complex Systems Design & Management

�Engineering tackles complexity by:
o Coping with it: Practice of Engineering

� Methodologies

� Standards, certification� Standards, certification

� Best practices

� The art of engineering

o Simplifying it: Science behind engineering
� Deeper study of the foundational phenomena

� Appropriate levels of abstraction

� Formal, mathematical models

© F. Arbab 2010 2

Complexity vs. Bewilderment

� Complex Systems Design & Management

� Complex task/algorithm/computation
o Examples:

� Computations/equations in quantum mechanics, astronomy, engineering, etc.

� Bit-map to jpeg conversion, sorting, etc.

o This type of complexity is not bewildering!

Complex? How?

o This type of complexity is not bewildering!
� Good, intricate mathematical models have tamed the complexity.

� Systems of simple components can exhibit very bewildering behavior
o Example:

� 4 components send messages to each other (12)

� Each component can be in one of 4 states (256 system states)

� Exchanges in the context of system state (3072 possibilities)

� Asynchronous exchange: more to consider!

� More than a single type of message: multiplicatively more to consider!

o Bewildering complexity emerges out of interaction

o Good formal models to tame this complexity?

© F. Arbab 2010 3

Concurrency and Interaction

� Interaction is the subject of interest in concurrency

o “Elements of Interaction”

Robin Milner, Turing Award Lecture, 1991.

� How formal languages and models of concurrency
represent interaction?

© F. Arbab 2010 4

Producers and Consumer

�Construct an application consisting of:
o A Display consumer process

o A Green producer processo A Green producer process

o A Red producer process

�The consumer must alternately display
the contents made available by the
Green and the Red consumers.

© F. Arbab 2010 5

Java-like Implementation

� Shared entities

� Consumer while (true) {

sleep (4000);

bufferSemaphore.acquire();

private final Semaphore greenSemaphore = new Semaphore(1);

private final Semaphore redSemaphore = new Semaphore(0);

private final Semaphore bufferSemaphore = new Semaphore(1);

private String buffer = EMPTY;

•Where is green text computed?
•Where is red text computed?
•Where is text printed?
•Where is the protocol?

•What determines who goes first?
•What determines producers alternate?
•What provides buffer protection?

� Producers

bufferSemaphore.acquire();

if (buffer != EMPTY) {

println(buffer);

buffer = EMPTY;

}

bufferSemaphore.release();

}

while (true) {

sleep (5000);

greenText = ...

greenSemaphore.acquire();

bufferSemaphore.acquire();

buffer = greenText;

bufferSemaphore.release();

redSemaphore.release();

}

while (true) {

sleep (3000);

redText = ...

redSemaphore.acquire();

bufferSemaphore.acquire();

buffer = redText;

bufferSemaphore.release();

greenSemaphore.release();

}

•Deadlocks?
•Live-locks?
•…

•Protocol becomes
•Implicit, nebulous, and intangible
•Difficult to reuse

© F. Arbab 2010 6

Process Algebraic Model

� Shared entities

� Consumer
B := ?b(t) . print(t) . !d("done") . B

synchronization-points: g, r, b, d

•What are the primitives and constructs in this model?

•Shared names to synchronize communication:

•g, r, b, d
•Atomic actions:

•Primitive actions defined by algebra:

•?_(_), !_(_)
•User-defined actions:

� Producers

�Model

B := ?b(t) . print(t) . !d("done") . B

G := ?g(k) . genG(t) . !b(t) . ?d(j) . !r(k) . G

R := ?r(k) . genR(t) . !b(t) . ?d(j) . !g(k) . R

•User-defined actions:
•genG(_), genR(_), print(_)

•Composition operators:

•., |, +, :=, implied recursion

•A model is constructed by composing (atomic) actions into
(more complex) actions.

•Primarily a model of actions/processes

•Hence the name “process algebra”

•Where is interaction?

G | R | B | !g("token")

© F. Arbab 2010 7

Implicit Interaction

� Interaction (protocol) is implicit in action-based models of concurrency

� Interaction is a by-product of processes executing their actions
o Action ai of process A collides with action bj of process B

o Interaction is the specific (timed) sequence of such collisions in a run

o Interaction protocol is the (timed) sequence of the intended collisions in
such a sequence.such a sequence.

� How can the intended and the coincidental be differentiated?

� How can the sequence of intended collisions (the interaction
protocol) can be
o Manipulated?

o Verified?

o Debugged?

o Reused ?

o ...

Possible only indirectly, through
manipulating processes

© F. Arbab 2010 8

Elements of Interaction

� Coordination is constrained interaction: it constrains
interaction protocols among communicating software
components.

– “Coordination as Constrained Interaction” Peter Wegner

� What is an interaction protocol?� What is an interaction protocol?
� Synchrony / asynchrony

� Atomicity

� Ordering

� Exclusion

� Grouping

� Selection

� …

� How to formalize interaction explicitly?
o Constraints

© F. Arbab 2010 9

Interaction Based Concurrency

� Make interaction explicit!

� Start with a set of primitive interactions as binary constraints

� Define (constraint) composition operators to combine
interactions into more complex interactions

� Properties of the resulting model of concurrency depend on� Properties of the resulting model of concurrency depend on
o Set of primitive interactions

o Composition operators

� As constraints, interaction protocols can be manifested
independently of the processes that they engage
o Connectors

� Imposing an interaction on actors exogenously coordinates their
activities

© F. Arbab 2010 10

Exogenous Coordination

� P and C are black-box component/services that:
o Offer no inter-service methods nor make such calls

o Do not send/receive targeted messages

o Their only means of communication is through blocking I/O
primitives that they can perform on their own ports:primitives that they can perform on their own ports:
� get(p, v) or get(p, v, t)

� put(p, v) or put(p, v, t)

o Composing P and C with different connectors (that impose
different protocols from outside) constructs different
systems.

© F. Arbab 2010

CP
synchronousbounded bufferedunbounded bufferedOrdered (e.g., FIFO)unorderedasynchronousLossy (e.g., sampling)etc.

11

Reo

� Reo is an exogenous coordination language for compositional
construction of interaction protocols.

� Interaction is the only first-class concept in Reo:
o Explicit constructs representing interaction

o Composition operators over interaction constructs

� A (coordination or interaction) protocol:

http://reo.project.cwi.nl

� A (coordination or interaction) protocol:
o manifests as a connector

o gets imposed on its engaged components/services from outside

o remains mutually oblivious to its engaged components/services

� Reo offers:
o Loose(st) coupling

o Arbitrary mix of asynchrony, synchrony, and exclusion

o Open-ended user-defined primitive channels

o Distribution and mobility

o Dynamically reconfigurable connectors

© F. Arbab 2010 12

Concurrency in Reo

� Reo embodies a non-conventional model of concurrency:

� Conventional

o action based

o process as primitive

� Reo

o interaction based

o Protocol as primitive

� Reo is more expressive than Petri nets, workflow, and dataflow
models.

© F. Arbab 2010

o process as primitive

o imperative

o functional

o imperative programming

o protocol implicit in processes

o Protocol as primitive

o declarative

o relational

o constraint programming

o Tangible explicit protocols

13

Channels

� Atomic connectors in Reo are called channels.
� Reo generalizes the common notion of channel.
� A channel is an abstract communication medium with:

o exactly two ends; and
o a constraint that relates (the flows of data at) its ends.

© F. Arbab 2010

o a constraint that relates (the flows of data at) its ends.

� Two types of channel ends
o Source: data enters into the channel.
o Sink: data leaves the channel.

� A channel can have two sources or two sinks.
� A channel represents a primitive interaction.

14

Primitive Channels

�Synchronous channel
o write/take

�Synchronous drain channel
o write/write

© F. Arbab 2010

o write/write

�Synchronous spout channel
o take/take

�Lossy synchronous channel
o write/take

�Asynchronous FIFO1 channel
o write/take

15

�Mixed node
o Merge + replication combo

�Sink node

Join

a

b

a

b c

© F. Arbab 2010

�Sink node
o Non-deterministic merge

�Source node
o Replication

b
c

c

b

a

16

Reo Connectors

B

FIFO1 channel synchronous
channel

lossy synchronous
channel

filter channel

≤τ
P-producer

synchronous drain asynchronous drainsynchronous spout asynchronous spout timer channel

B

© F. Arbab 2010

=
A

C

A

B

C

Exclusive choice (deffered XOR)

closeopen

A B

Valve connector:

controls flow from A to B

17

A Simple Composed System

� Read-cue synchronous flow-regulator

© F. Arbab 2010

p c

t

!x x?

?x

18

Flow regulator

�Write-cue synchronous flow-regulator

© F. Arbab 2010

a c

b

!x ?

!y

x

19

Flow Synchronization

�The write/take operations on the pairs
of channel ends a/c and b/d are
synchronized.

Barrier synchronization.

© F. Arbab 2010

�Barrier synchronization.

a

b

c

d

!x!x ?!x ?

?

!x

!y

?

?

x

y

20

Alternator

�Subsequent takes from c retrieve the
elements of the stream (ab)*

�Both a and b must be present before a
pair can go through.

© F. Arbab 2010

!1

!2

?

2

1!3

!4 2

1!1!1

!2

Both a and b must be present before a
pair can go through.

a

b

c
4,3,2,1

4

? 3,2,1

4

3,2,1!3

!4

? 2,1!3

!4

2,1!3

!4 2

? 1!3

2

1

21

�We can use the alternator circuit to impose
the protocol on the green and red producers
of our example
o From outside

Alternating Producers

o From outside

o Without their knowledge

© F. Arbab 2010 22

a b c d

Sequencer

�Writes to a, b, c, and d will succeed
cyclically and in that order.

!1 !2!3 !4

© F. Arbab 2010

a b c d

o

!1 !2!3

o o

!4

o

23

Sequenced Producers

�A two-port sequencer and a few channels
form the connector we need to compose and
exogenously coordinate the green/red
producers/consumer system.

© F. Arbab 2010

producers/consumer system.

Sequencer

24

Overflow Lossy FIFO1

�A FIFO1 channel that accepts but
loses new incoming values if its
buffer is full.

© F. Arbab 2010

≡

buffer is full.

25

Shift Lossy FIFO1

�A FIFO1 channel that loses its old buffer
contents, if necessary, to make room for new
incoming values.

© F. Arbab 2010

≡

o

XRouter

26

Variable

�Every input value is remembered and
repeatedly reproduced as output, zero or
more times, until it is replaced by the next
input value.

© F. Arbab 2010

input value.

≡

27

Buffered Producers

�Adding variables to the sequencer
solution, buffers the actions of the
producers and the consumer.

© F. Arbab 2010

Sequencer

28

Semantics

� Reo allows:
o Arbitrary user-defined channels as primitives.
o Arbitrary mix of synchrony and asynchrony.
o Relational constraints between input and output.

� Reo is more expressive than, e.g., dataflow models,
Kahn networks, workflow models, stream processing

© F. Arbab 2010

� Reo is more expressive than, e.g., dataflow models,
Kahn networks, workflow models, stream processing
models, Petri nets, and synchronous languages.
� Formal semantics:

o Coalgebraic semantics based on timed-data streams.
o Constraint automata.
o SOS semantics (in Maude).
o Constraint propagation (connector coloring scheme).
o Intuitionistic linear logic

29

Eclipse Coordination Tools

� A set of Eclipse plug-ins provide the ECT visual programming
environment.

� Protocols can be designed by composing Reo circuits in a
graphical editor.

� The Reo circuit can be animated in ECT.� The Reo circuit can be animated in ECT.

� ECT can automatically generate the CA for a Reo circuit.

� Model-checkers integrated in ECT can be used to verify the
correctness properties of a protocol using its CA.

� ECT can generate executable (Java/C) code from a CA as a
single sequential thread.

© F. Arbab 2010

http://reo.project.cwi.nl

30

Tool support

Tool Description
Reo graphical editor Drag and drop editing of Reo circuits

Reo animation plug-in Flash animation of data-flow in Reo circuits

Extensible Automata editor and tools Graphical editor and other automata tools

Reo to constraint automata converter Conversion of Reo to Constraint Automata

•Vereofy model checker (www.vereofy.de)

© F. Arbab 2010

Verification tools
•Vereofy model checker (www.vereofy.de)
•mCRL model checking
•Bounded model checking of Timed Constraint Automata

Java code generation plug-in
State machine based coordinator code
(Java, C, and CA interpreter for Tomcat servlets)

Distributed Reo middleware Distributed Reo code generated in Scala (Actor-based Java)

(UML / BPMN / BPEL) GMT to Reo converter Automatic translation of UML SD / BPMN / BPEL to Reo

Reo Services platform Web service wrappers and Mash-ups

Markov chain generator
Compositional QoS model based on Reo
Analysis using, e.g., probabilistic symbolic model checker
Prism (http://www.prismmodelchecker.org)

Algebraic Graph Transformation Dynamic reconfiguration of Reo circuits

31

Tool snapshots

Reo graphical editor

© F. Arbab 2010

Reo to constraint automata converter

Reo graphical editor

Reo simulation plug-in
http://reo.project.cwi.nl

32

Snapshot of Reo Editor

© F. Arbab 2010 33

Reo Animation Tool

© F. Arbab 2010 34

ECT Converter Toolset

Changizi, B., Kokash, N., Arbab, F.: A Unified Toolset for Business Process Model Formalization,
International Workshop on Formal Engineering approaches to Software Components and
Architectures (FESCA’2010), tool demonstration paper

© F. Arbab 2010 35

Model Checking

� Constraint automata are used for model checking of
Reo circuits

� Vereofy model checker (http://www.vereofy.de)
o Developed at University of Dresden:o Developed at University of Dresden:

o Symbolic model, LTL, and CTL-like logic for specification

o Can also verify properties such as deadlock-freeness and
behavioral equivalence

� SAT-based bounded model checking of Timed
Constraint Automata

� Translation of Reo to mCRL for model checking
o Developed at TU Eindhoven (http://www.mcrl2.org)

© F. Arbab 2010 36

Verification with Vereofy

� Modal formulae
o Branching time temporal logic: AG[EX[true]] – check for deadlocks

o Linear temporal logics: G(request→ F (reject ∪ sendFormOut)) – check that admissible
states reject or sendFormOut are reached

Reo2ConstraintAutomata

© F. Arbab 2010 37

Data Dependent Control Flow

struct el(activated:

Bool, amount: Nat)

(amount(d)<1) (amount(d)==2)
No data

© F. Arbab 2010 38

Conclusion

� Making interaction explicit in concurrency allows its direct
o Specification
o composition
o Analysis
o Verification
o reuse

� Reo is a simple, rich, versatile, and surprisingly expressive

© F. Arbab 2010

� Reo is a simple, rich, versatile, and surprisingly expressive
language for compositional construction of pure (coordination or
concurrency) protocols.
o Looser interdependencies and strict separation of concerns.
o Unique emphasis on interaction, as (the only) first-class concept.
o Free combination of synchrony, exclusion, and asynchrony, as

relational constraints simplifies definition of interaction protocols
and atomic transactions.

o Exogenous interaction/coordination

http://reo.project.cwi.nl
39

