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Complex Systems Design & Management

�Engineering tackles complexity by:
o Coping with it: Practice of Engineering

� Methodologies

� Standards, certification� Standards, certification

� Best practices

� The art of engineering

o Simplifying it: Science behind engineering
� Deeper study of the foundational phenomena

� Appropriate levels of abstraction

� Formal, mathematical models
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Complexity vs. Bewilderment

� Complex Systems Design & Management

� Complex task/algorithm/computation
o Examples:

� Computations/equations in quantum mechanics, astronomy, engineering, etc.

� Bit-map to jpeg conversion, sorting, etc.

o This type of complexity is not bewildering!

Complex? How?

o This type of complexity is not bewildering!
� Good, intricate mathematical models have tamed the complexity.

� Systems of simple components can exhibit very bewildering behavior
o Example:

� 4 components send messages to each other (12)

� Each component can be in one of 4 states (256 system states)

� Exchanges in the context of system state (3072 possibilities)

� Asynchronous exchange: more to consider!

� More than a single type of message: multiplicatively more to consider!

o Bewildering complexity emerges out of interaction

o Good formal models to tame this complexity?
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Concurrency and Interaction

� Interaction is the subject of interest in concurrency

o “Elements of Interaction”

Robin Milner, Turing Award Lecture, 1991.

� How formal languages and models of concurrency 
represent interaction?
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Producers and Consumer

�Construct an application consisting of: 
o A Display consumer process

o A Green producer processo A Green producer process

o A Red producer process

�The consumer must alternately display 
the contents made available by the 
Green and the Red consumers.  
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Java-like Implementation

� Shared entities

� Consumer while (true) {

sleep (4000);

bufferSemaphore.acquire();

private final Semaphore greenSemaphore = new Semaphore(1);

private final Semaphore redSemaphore = new Semaphore(0);

private final Semaphore bufferSemaphore = new Semaphore(1);

private String buffer = EMPTY; 

•Where is green text computed?
•Where is red text computed?
•Where is text printed?
•Where is the protocol?

•What determines who goes first?
•What determines producers alternate?
•What provides buffer protection?

� Producers

bufferSemaphore.acquire();

if (buffer != EMPTY) {

println(buffer);

buffer = EMPTY;

}

bufferSemaphore.release();

}

while (true) {

sleep (5000);

greenText = ...

greenSemaphore.acquire();

bufferSemaphore.acquire();

buffer = greenText;

bufferSemaphore.release();

redSemaphore.release();

}

while (true) {

sleep (3000);

redText = ...

redSemaphore.acquire();

bufferSemaphore.acquire();

buffer = redText;

bufferSemaphore.release();

greenSemaphore.release();

}

•Deadlocks?
•Live-locks?
•…

•Protocol becomes
•Implicit, nebulous, and intangible
•Difficult to reuse
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Process Algebraic Model

� Shared entities

� Consumer
B := ?b(t) . print(t) . !d("done") . B

synchronization-points: g, r, b, d

•What are the primitives and constructs in this model?

•Shared names to synchronize communication:

•g, r, b, d
•Atomic actions:

•Primitive actions defined by algebra:

•?_(_), !_(_)
•User-defined actions:

� Producers

�Model

B := ?b(t) . print(t) . !d("done") . B

G := ?g(k) . genG(t) . !b(t) . ?d(j) . !r(k) . G 

R := ?r(k) . genR(t) . !b(t) . ?d(j) . !g(k) . R

•User-defined actions:
•genG(_), genR(_), print(_)

•Composition operators:

•., |, +, :=, implied recursion

•A model is constructed by composing (atomic) actions into 
(more complex) actions.

•Primarily a model of actions/processes

•Hence the name “process algebra”

•Where is interaction?

G | R | B | !g("token")
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Implicit Interaction

� Interaction (protocol) is implicit in action-based models of concurrency

� Interaction is a by-product of processes executing their actions
o Action ai of process A collides with action bj of process B

o Interaction is the specific (timed) sequence of such collisions in a run

o Interaction protocol is the (timed) sequence of the intended collisions in 
such a sequence.such a sequence.

� How can the intended and the coincidental be differentiated?

� How can the sequence of intended collisions (the interaction 
protocol) can be
o Manipulated?

o Verified?

o Debugged?

o Reused ?

o ...

Possible only indirectly, through 
manipulating processes
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Elements of Interaction

� Coordination is constrained interaction: it constrains 
interaction protocols among communicating software 
components.

– “Coordination as Constrained Interaction”  Peter Wegner

� What is an interaction protocol?� What is an interaction protocol?
� Synchrony / asynchrony

� Atomicity

� Ordering

� Exclusion

� Grouping

� Selection

� …

� How to formalize interaction explicitly?
o Constraints

© F. Arbab 2010 9



Interaction Based Concurrency

� Make interaction explicit!

� Start with a set of primitive interactions as binary constraints

� Define (constraint) composition operators to combine 
interactions into more complex interactions

� Properties of the resulting model of concurrency depend on� Properties of the resulting model of concurrency depend on
o Set of primitive interactions

o Composition operators

� As constraints, interaction protocols can be manifested 
independently of the processes that they engage
o Connectors

� Imposing an interaction on actors exogenously coordinates their 
activities
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Exogenous Coordination

� P and C are black-box component/services that:
o Offer no inter-service methods nor make such calls

o Do not send/receive targeted messages

o Their only means of communication is through blocking I/O 
primitives that they can perform on their own ports:primitives that they can perform on their own ports:
� get(p, v) or get(p, v, t)

� put(p, v) or put(p, v, t)

o Composing P and C with different connectors (that impose 
different protocols from outside) constructs different 
systems.
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CP
synchronousbounded bufferedunbounded bufferedOrdered (e.g., FIFO)unorderedasynchronousLossy (e.g., sampling)etc.
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Reo

� Reo is an exogenous coordination language for compositional 
construction of interaction protocols.

� Interaction is the only first-class concept in Reo:
o Explicit constructs representing interaction

o Composition operators over interaction constructs

� A (coordination or interaction) protocol:

http://reo.project.cwi.nl

� A (coordination or interaction) protocol:
o manifests as a connector

o gets imposed on its engaged components/services from outside

o remains mutually oblivious to its engaged components/services

� Reo offers:
o Loose(st) coupling

o Arbitrary mix of asynchrony, synchrony, and exclusion

o Open-ended user-defined primitive channels

o Distribution and mobility

o Dynamically reconfigurable connectors
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Concurrency in Reo

� Reo embodies a non-conventional model of concurrency:

� Conventional

o action based

o process as primitive

� Reo

o interaction based

o Protocol as primitive

� Reo is more expressive than Petri nets, workflow, and dataflow 
models.
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o process as primitive

o imperative

o functional

o imperative programming

o protocol implicit in processes

o Protocol as primitive

o declarative

o relational

o constraint programming

o Tangible explicit protocols
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Channels 

� Atomic connectors in Reo are called channels.
� Reo generalizes the common notion of channel.
� A channel is an abstract communication medium with:

o exactly two ends; and
o a constraint that relates (the flows of data at) its ends.
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o a constraint that relates (the flows of data at) its ends.

� Two types of channel ends
o Source: data enters into the channel.
o Sink: data leaves the channel.

� A channel can have two sources or two sinks.
� A channel represents a primitive interaction.
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Primitive Channels

�Synchronous channel
o write/take

�Synchronous drain channel
o write/write
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o write/write

�Synchronous spout channel
o take/take

�Lossy synchronous channel
o write/take

�Asynchronous FIFO1 channel
o write/take
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�Mixed node
o Merge + replication combo

�Sink node

Join

a

b

a

b c
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�Sink node
o Non-deterministic merge

�Source node
o Replication

b
c

c

b

a
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Reo Connectors

B

FIFO1 channel synchronous 
channel

lossy synchronous 
channel

filter channel

≤τ
P-producer

synchronous drain asynchronous drainsynchronous spout asynchronous spout timer channel

B

© F. Arbab 2010

=
A

C

A

B

C

Exclusive choice (deffered XOR)

closeopen

A B

Valve connector: 

controls flow from A to B
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A Simple Composed System

� Read-cue synchronous flow-regulator
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p c

t

!x x?

?x
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Flow regulator

�Write-cue synchronous flow-regulator
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a c

b

!x ?

!y

x
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Flow Synchronization

�The write/take operations on the pairs 
of channel ends a/c and b/d are 
synchronized.

Barrier synchronization.
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�Barrier synchronization.

a

b

c

d

!x!x ?!x ?

?

!x

!y

?

?

x

y
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Alternator

�Subsequent takes from c retrieve the 
elements of the stream (ab)*

�Both a and b must be present before a 
pair can go through.
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Both a and b must be present before a 
pair can go through.

a

b

c
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4
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2
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�We can use the alternator circuit to impose 
the protocol on the green and red producers 
of our example
o From outside

Alternating Producers

o From outside

o Without their knowledge
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a b c d

Sequencer 

�Writes to a, b, c, and d will succeed 
cyclically and in that order.

!1 !2!3 !4
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a b c d

o

!1 !2!3

o o

!4

o
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Sequenced Producers

�A two-port sequencer and a few channels 
form the connector we need to compose and 
exogenously coordinate the green/red 
producers/consumer system.
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producers/consumer system.

Sequencer
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Overflow Lossy FIFO1

�A FIFO1 channel that accepts but 
loses new incoming values if its 
buffer is full.
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≡

buffer is full.
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Shift Lossy FIFO1

�A FIFO1 channel that loses its old buffer 
contents, if necessary, to make room for new 
incoming values.
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≡

o

XRouter
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Variable

�Every input value is remembered and 
repeatedly reproduced as output, zero or 
more times, until it is replaced by the next 
input value.
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input value.

≡
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Buffered Producers

�Adding variables to the sequencer 
solution, buffers the actions of the 
producers and the consumer.
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Sequencer
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Semantics

� Reo allows:
o Arbitrary user-defined channels as primitives.
o Arbitrary mix of synchrony and asynchrony.
o Relational constraints between input and output.

� Reo is more expressive than, e.g., dataflow models, 
Kahn networks, workflow models, stream processing 
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� Reo is more expressive than, e.g., dataflow models, 
Kahn networks, workflow models, stream processing 
models, Petri nets, and synchronous languages.
� Formal semantics:

o Coalgebraic semantics based on timed-data streams.
o Constraint automata.
o SOS semantics (in Maude).
o Constraint propagation (connector coloring scheme).
o Intuitionistic linear logic
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Eclipse Coordination Tools

� A set of Eclipse plug-ins provide the ECT visual programming 
environment.

� Protocols can be designed by composing Reo circuits in a 
graphical editor.

� The Reo circuit can be animated in ECT.� The Reo circuit can be animated in ECT.

� ECT can automatically generate the CA for a Reo circuit.

� Model-checkers integrated in ECT can be used to verify the 
correctness properties of a protocol using its CA.

� ECT can generate executable (Java/C) code from a CA as a 
single sequential thread.
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Tool support

Tool Description
Reo graphical editor Drag and drop editing of Reo circuits

Reo animation plug-in Flash animation of data-flow in Reo circuits

Extensible Automata editor and tools Graphical editor and other automata tools

Reo to constraint automata converter Conversion of Reo to Constraint Automata

•Vereofy model checker (www.vereofy.de)
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Verification tools
•Vereofy model checker (www.vereofy.de)
•mCRL model checking
•Bounded model checking of Timed Constraint Automata

Java code generation plug-in
State machine based coordinator code
(Java, C, and CA interpreter for Tomcat servlets)

Distributed Reo middleware Distributed Reo code generated in Scala (Actor-based Java)

(UML / BPMN / BPEL) GMT to Reo converter Automatic translation of UML SD / BPMN / BPEL to Reo

Reo Services platform Web service wrappers and Mash-ups

Markov chain generator
Compositional QoS model based on Reo
Analysis using, e.g., probabilistic symbolic model checker 
Prism (http://www.prismmodelchecker.org)

Algebraic Graph Transformation Dynamic reconfiguration of Reo circuits
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Tool snapshots

Reo graphical editor
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Reo to constraint automata converter

Reo graphical editor

Reo simulation plug-in
http://reo.project.cwi.nl
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Snapshot of Reo Editor
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Reo Animation Tool
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ECT Converter Toolset

Changizi, B., Kokash, N., Arbab, F.: A Unified Toolset for Business Process Model Formalization, 
International Workshop on Formal Engineering approaches to Software Components and 
Architectures (FESCA’2010),  tool demonstration paper
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Model Checking

� Constraint automata are used for model checking of 
Reo circuits

� Vereofy model checker (http://www.vereofy.de) 
o Developed at University of Dresden:o Developed at University of Dresden:

o Symbolic model, LTL, and CTL-like logic for specification

o Can also verify properties such as deadlock-freeness and 
behavioral equivalence

� SAT-based bounded model checking of Timed 
Constraint Automata

� Translation of Reo to mCRL for model checking
o Developed at TU Eindhoven (http://www.mcrl2.org)
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Verification with Vereofy

� Modal formulae
o Branching time temporal logic: AG[EX[true]] – check for deadlocks

o Linear temporal logics: G(request→ F (reject ∪ sendFormOut)) – check that admissible 
states reject or sendFormOut are reached

Reo2ConstraintAutomata
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Data Dependent Control Flow 

struct el(activated: 

Bool, amount: Nat)

(amount(d)<1) (amount(d)==2)
No data

© F. Arbab 2010 38



Conclusion

� Making interaction explicit in concurrency allows its direct
o Specification
o composition
o Analysis
o Verification
o reuse

� Reo is a simple, rich, versatile, and surprisingly expressive 
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� Reo is a simple, rich, versatile, and surprisingly expressive 
language for compositional construction of pure (coordination or 
concurrency) protocols.
o Looser interdependencies and strict separation of concerns.
o Unique emphasis on interaction,  as (the only) first-class concept.
o Free combination of synchrony, exclusion, and asynchrony, as 

relational constraints simplifies definition of interaction protocols 
and atomic transactions.

o Exogenous interaction/coordination

http://reo.project.cwi.nl
39


