

A hierarchical approach to design a V2V intersection assistance system

Hycham Aboutaleb

System Engineer, Knowledge Inside <u>hycham.aboutaleb@k-inside.com</u>

Samuel Boutin

President and CTO, Knowledge Inside <u>sbo@k-inside.com</u>

Bruno Monsuez

Associate Professor, UEI, ENSTA Paristech <u>bruno.monsuez@ensta.fr</u>

Introduction

 Use cases are often used as thread of events
 → Unrelated to the system

➔ Unrelated to the system design.

- Use cases are described unitarily
 → Incomplete model
- System boundaries are not clear
 → Environment integration in the model?

Context

- Road junctions: 40-60% of accidents
- Complex problem : Huge number of possible scenarios
- Need: Manage the combinatorial explosion of possible use cases

Problem Positioning

The complexity of these systems can be classified • into two categories: Complexity in space Ο Complexity in time Ο 00 Thus we need to all the scenarii and to ٠ classify th y in sp<mark>ace and time</mark> ie dimensions.

Our Methodology

- To deal with the complexity of the problem we need several reductions:
 - Structural Reduction
 - $\circ~$ Identify the system
 - Manage topologies diversity
 - **o** Dynamical Reduction
 - o Reduce to involved elements
 - Reduce using symmetry
 - **o** Behavioral Reduction
 - o Reduce to vehicles behavior
 - o Identify scenario constraints
 - **o** Decisional Reduction
 - $\circ~$ Identify decisions for the scenario
 - o Identify actions for the scenario

Structural Reduction Top Level: Environment

Complex Systems Design & Management 2010

Dynamic Reduction (1) First Level: Selecting the Vehicles

- Vehicles that have the same interval of time-to-collision might collide.
- Matching vehicles will communicate together only.
- Complexity is reduced to a maximum of 4 vehicles

Dynamic Reduction (2) Second Level: Selecting pairs of vehicles (1)

- We take the perspective of a vehicle arriving at the intersection and call it *Subject Vehicle* (SV).
- All other vehicles are considered *Intruder Vehicles* (IV).
- This choice is completely arbitrary and in no way determines the priority of each vehicle.

Dynamic Reduction (2)
 Second Level: Selecting pairs of vehicles (2)

Behavioral Reduction (1) Third Level: Identifying all the Scenarii

Behavioral Reduction (2) Fourth Level: Managing priorities

- For each use case, manage the transition of the two vehicles by priority for each.
- The change of priority implies the passage from one state to another.

arKitect®

Decisional Reduction Fifth Level: Acting and deciding (1)

ar<mark>KI</mark>tect®

Decisional Reduction Fifth Level: Acting and deciding (2)

Advantages of our approach

- Strong and intuitive link between use cases and functional architecture.
- Graphical traceability to check coherence.

Conclusion

- Despite the fact that use cases in themselves are quite intuitive, the process around them is a much bigger.
- The top-down approach that we followed leads to greater efficiency in complex tasks.
- The model-based design is a result of this decomposition.
- It is expected that the resulting system will be applicable to a wider range of accident scenarios.

Future Works

- Simulate (MIL, SIL): Verify the model through simulation, which needs to model and simulate a user behavior and his reactions to MMI messages in each situation.
- Code generation: From the detailed model and based on the use cases, an automatic code generation can be performed
- Estimate software design cost: an analysis for each elementary function can be performed. The cost should be assessed according to the hierarchical decomposition (analysis, design test for each level).

Thanks for your Attention !!

QUESTIONS?

Complex Systems Design & Management 2010