
Software Architectures for Flexible Task-oriented
Program Execution on Multicore Systems

Thomas Rauber1 Gudula Rünger2

University of Bayreuth, Germany
Chemnitz University of Technology, Germany

Complex Systems Design & Management (CSDM) 2010
Oct 2010, Paris, France

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 1 / 24

Outline

1 Introduction

2 Task-based programming
Task decomposition
Task interaction via shared variables

3 Software architectures for task-based programs
Task scheduling
Software environment for task-based programs

4 Runtime experiments

5 Conclusions

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 2 / 24

Introduction

Future cluster and multicore systems will soon offer ubiquitous
parallelism for all application areas.

However: the mainstream programming model is still sequential.
sophisticated programming techniques are required to access the
parallel resources available

A change in programming and software development is imperative for
making the capabilities of the new architectures available to programmers
and users of all kinds of software systems.

Many effective parallel programming models are available
often from HPC; examples: MPI, OpenMP, and Pthreads;

problem: the level of abstraction provided may be too low-level.

Trend towards large multicore systems with many (heterogeneous) cores
requires a higher level of abstraction for software development to reach
productivity and scalability.

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 3 / 24

Contribution of the article

We propose a parallel programming methodology exploiting
task-based views of software products.

The main goal is to deliver a hybrid, flexible and abstract parallel
programming model at a high level of abstraction.

The main feature of the approach is a decoupling of the specification
of a parallel algorithm from the actual execution of the parallel work
units identified by the specification on a given parallel system.

We propose to extend the standard model of a task-based execution to
multi-threaded tasks that can be executed by multiple cores.

An appropriate specification mechanism allows the expression of
algorithms from different application areas on an abstract level.
This facilitates the development of parallel programs significantly and
makes parallel computing resources available to a large community of
software developers.

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 4 / 24

Outline

1 Introduction

2 Task-based programming
Task decomposition
Task interaction via shared variables

3 Software architectures for task-based programs
Task scheduling
Software environment for task-based programs

4 Runtime experiments

5 Conclusions

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 5 / 24

Task decomposition

The execution environment is based on a decomposition of the
computations of the software system into tasks.
task creation can be static or dynamic;

Specification of task creation is separated from task execution.

Input and output data may cause dependencies between tasks.
illustration by a task dependence graph (TDG).

Independent tasks can be executed in parallel.
different execution modes of tasks can be considered:

Sequential execution of a task on a single core;
Parallel execution of a task on multiple cores with a shared address
space using a multi-threaded execution with synchronization;
Parallel execution of a task on multiple cores employing a distributed
address space performing intra-task communication by
message-passing;
Parallel execution of a task on multiple cores with a mixed shared and
distributed address space (synchronization and communication).

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 6 / 24

Task decomposition

An application program is represented by a set of tasks
T = {T1,T2, . . .} and a coordination structure C defining the
interactions between tasks.

A task captures a logical unit of the application and can be defined with
different granularities.

The coordination structure describes possible cooperations between
the tasks.
The cooperation between the tasks can be specified in different ways:

Tasks cooperate by specifying input-output relations, i.e., one task
outputs data that is used by another task as input; in this case, the tasks
must be executed one after another;
Tasks are independent of each other, allowing a concurrent execution
without interactions;
Tasks can cooperate during their execution by exchanging information or
data, thus requiring a concurrent execution of cooperating tasks.

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 7 / 24

Task definition

Tasks and their interaction can be defined statically or dynamically

static definition: all tasks and their interactions are known at compile
time before the actual program execution;
→ appropriate scheduling and mapping techniques can be used

dynamic definition: tasks may also be created dynamically at runtime
→ task deployment must be planned at runtime

here: parallel tasks using a shared address space;
coordination structure based on input-output dependencies.

Tasks that are not connected by an input-output relation can be
executed in any execution order.

Each task is implemented as a multi-threaded program using shared
variables for information exchange.

For each task, internal variables and external variables can be
distinguished.

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 8 / 24

Task interaction – internal and external variables

Internal variables are only visible within the task and can be accessed
by all threads executing that task.
→ synchronization mechanism for a coordinated access to the internal
variables required

External variables of a task are visible to all other tasks of the program.

visibility restricted to an input-output relation between tasks T → T ′;
→ the execution of T has to be finished before the execution of T ′ starts;

T and T ′ can be executed on the same set or different sets of cores;
→ output variables of T must be made available to the cores executing
T ′

The input variables of a task T are provided before the actual execution
starts;

The output variables of T are exported after the execution of T has
been finished.

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 9 / 24

Task interaction – example

input-output relation T1→ T3 and T2→ T3;
→ T1 and T2 can be executed in parallel;

barrier and flush

TTask 3

Task

cores

ti
m

e

T1 visible: EV and IV

visible variable sets: EV and IV

TaskT2
visible: EV , IV

3T T1

32T T1T T3
of SV and SV

T 1 T 1

T T1 3 T T32

T 3 T 3

T T32

T 2 T 2

access to SV

access to variable set SV and SV

access to SV

information exchange T1→ T3 and T2→ T3;

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 10 / 24

Coordination language

The coordination language provides operators for specifying
dependencies or independencies between task.
operators to express dependence and independence between tasks;
generalization: parallel loops

Example 1: iterated RK method for solving differential equations;

Example 2: extrapolation method for solving differential equations;

compiler framework for analysis and translation into executable parallel
programs;

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 11 / 24

Specification program of the iterated RK method
External task declarations:

StageVector(IN f: scal × vec(n)→ vec(n), x: scal, y: vec(n),
s: scal, A: mat(s × s), h: scal, V: list[s] of vec(n);

OUT vnew: vec(n))
ComputeApprox(IN f: scal × vec(n)→ vec(n), x: scal, y: vec(n),

s: scal, b: vec(s), h: scal, V: list[s] of vec(n);
OUT ynew: vec(n))

StepsizeControl(IN y: vec(n), ynew: vec(n); OUT hnew: scal, xnew: scal)

Task definitions:
ItRKmethod(IN f: scal × vec(n)→ vec(n), x: scal, xend: scal, y: vec(n),

s: scal, A: mat(s × s), b: vec(s), h: scal;
OUT X: list[] of scal, Y: list[] of vec(n))

= while(x < xend) {
ItComputeStagevectors (f, x, y, s, A, h ; V)
◦ ComputeApprox (f, x, y, s, b, h, V ; ynew)
◦ StepsizeControl (y, ynew; xnew, hnew) }

ItComputeStagevectors(IN f: scal × vec(n)→ vec(n), x: scal, y: vec(n),
s: scal, A: mat(s × s), h: scal;

OUT V: list[s] of vec(n))
= InitializeStage(y ; V)
◦ for(j=1,...,m)

parfor (l=1,...,s) StageVector(f, x, y, V ; Vnew)

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 12 / 24

Specification program of the extrapolation method

External task declarations:
BuildExtrapTable(IN Y: list[r] of vec(n); y: OUT vec(n))
ComputeMicroStepsize(IN j: scal, H:scal, r:scal; OUT hj :scal)
EulerStep(IN f: scal × vec(n)→ vec(n), x: scal, y: vec(n), h: scal;

OUT ynew: vec(n))
StepsizeControl(IN y: vec(n), ynew: vec(n); OUT hnew: scal, xnew: scal)

Task definitions:
ExtrapMethod(IN f: scal × vec(n)→ vec(n), x: scal, xend: scal, y: vec(n),

r: scal, H: scal;
OUT X: list[] of scal, Y: list[] of vec(n))

= while(x < xend)
parfor(j=1,...,r) MicroSteps(j, f, x, y, H ; yj)
◦ BuildExtrapTable((y1,...,yr) ; ynew)
◦ StepsizeControl(y, ynew ; Hnew, xnew)

MicroSteps(IN j:scal , f: scal × vec(n)→ vec(n), x: scal, y: vec(n), H: scal;
OUT ynew: vec(n))

= ComputeMicroStepsize(j, H, r ; hj)
◦ for(i=1,...,j) EulerStep(f, x, y, hj ; ynew)

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 13 / 24

Outline

1 Introduction

2 Task-based programming
Task decomposition
Task interaction via shared variables

3 Software architectures for task-based programs
Task scheduling
Software environment for task-based programs

4 Runtime experiments

5 Conclusions

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 14 / 24

Software architectures for task-based programs

For the execution of a single task, the task is mapped to a set of cores
together with its internal variables.

The coordination structure does not specify an exact execution order of
the tasks, but leaves some degree of freedom when tasks are
independent of each other.

task scheduling problem: For a given coordination structure, how can
the tasks be mapped to the cores such that a minimum overall
execution time results?

There are usually several tasks that can be executed next at each point
of program execution.

The scheduler has knowledge about idle cores of the multicore platform
and selects tasks for execution from the set of ready tasks.

The set of tasks to be executed next must be defined and the number of
cores used has to be determined for each of the tasks selected.

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 15 / 24

Task scheduling

The assignment of the threads to cores is done by a thread scheduler.

. .
 .

. .
 .

. .
 .

dynamic
thread mapping

dynamic
thread mapping

dynamic
thread mapping

assignment
task

assignment
task

assignment
task

Task

Task T2

 T1

Task Tn

tasks groups
coresthread

groups

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 16 / 24

Software environment for task-based programs

correctness checker checks correctness of the input task graph

The scheduler requires feedback about the status of the execution
platform

scheduler
dependence

checker

parallel
multicore
machine

task
assignmentwith external

variables

task graphspecification C

set of tasks T

dynamic status
of execution

platform

status of
task execution

coordination

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 17 / 24

Outline

1 Introduction

2 Task-based programming
Task decomposition
Task interaction via shared variables

3 Software architectures for task-based programs
Task scheduling
Software environment for task-based programs

4 Runtime experiments

5 Conclusions

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 18 / 24

Runtime experiments

Task-based executions can provide competitive runtimes compared to
traditional parallel programming techniques.

Illustration for three platforms:
Xeon cluster with two nodes with two Intel Xeon E5345 “Clovertown“
quad core processors, infiniband network
Chemnitz High Performance Linux Cluster (CHiC): 538 nodes, each
consisting of two AMD Opteron 2218 dual core processors
SGI Altix LRZ Munich: 2 Itanium 2 dual-core per node;
128 nodes per partition;

application: iterated RK method with four stage vectors;
execution times of one time step;
spatial discretization of the 2D Brusselator equation;
Galerkin approximation of a Schrödinger-Poisson system

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 19 / 24

Runtime per time step for iterated RK method (sparse ODE)

20000180000 500000 720000 980000 1280000 1620000 2000000
0

0.5

1

1.5

2

2.5

system size

tim
e

pe
r

st
ep

 in
 s

ec
on

ds

IRK with RadauIIA7 for brusselator on Xeon (16 cores)

1 M−task
4 M−tasks ort scattered
4 M−tasks ort mixed (d=2)
4 M−tasks ort mixed (d=4)
4 M−tasks ort consecutive

spatial discretization of the 2D Brusselator equation

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 20 / 24

Speedup for iterated RK method (dense ODE)

16324864 96 128 192 256 320 384 448 512
0

50

100

150

200

250

300

350

400

cores

sp
ee

du
p

IRK−method with RadauIIA7 for schrödinger (n=128002) on CHiC

1 M−task
1 M−task OpenMP
4 M−tasks ort
4 M−tasks ort OpenMP

Galerkin approximation of a Schrödinger-Poisson system

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 21 / 24

MPI tasks vs. OpenMP threads
different combinations of MPI processes and OpenMP threads;
8-stage PABM for sparse ODEs on SGI Altix: time per step:

1/256 2/128 4/64 8/32 16/16 32/8 64/4 128/2 256/1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

MPI processes/OpenMP threads

tim
e

pe
r

st
ep

 in
 s

ec
on

ds

PABM with K=8 for brusselator on SGI Altix (256 cores)

1 M−task
8 M−tasks
8 M−tasks ort

orthogonal: 64 processes and 4 threads minimizes execution time;
Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 22 / 24

Outline

1 Introduction

2 Task-based programming
Task decomposition
Task interaction via shared variables

3 Software architectures for task-based programs
Task scheduling
Software environment for task-based programs

4 Runtime experiments

5 Conclusions

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 23 / 24

Conclusions

The portability and efficient execution on multicore architectures will
be an important property of all future software products;

A task-based parallel programming model provides a useful
abstraction;
the software system is decomposed into tasks.

The software system can exhibit a dynamic behavior such that new
tasks can be activated during the execution of another task.

The correct and efficient execution on a multicore platform is supported
by a software architecture and a task scheduler at application program
level.

Both are integrated into a separate runtime library which supports the
execution of arbitrary task-based software systems.

Thomas Rauber Flexible Task-oriented Program Execution on Multicore Systems Oct 2010 24 / 24

	Introduction
	Task-based programming
	Task decomposition
	Task interaction via shared variables

	Software architectures for task-based programs
	Task scheduling
	Software environment for task-based programs

	Runtime experiments
	Conclusions

