
Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Optimal technological architecture evolutions

of Information Systems1

Vassilis Giakoumakis1 Daniel Krob2 Fabio Roda2 Leo
Liberti2

[1] MIS, Université d Amiens, Amiens, France,

[2] LIX, École Polytechnique, 91128 Palaiseau, France

October 29, 2010

1Partially supported by École Polytechnique-Thales “Engineering of Complex
Systems” Chair and ANR grant 07-JCJC-0151 “ARS”.

1 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Outline

1 Introduction

Motivation

Elements of information system architecture

Evolution management problem

2 Methods

Mathematical programming

3 Results

Tests

Generated Data

4 Conclusions

5 Future Work

Work in progress

2 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Motivation

Convergence (1): Systems Architecture, Optimization,
Mathematical programming.

Convergence (2): Enterprise Architecture and IT technical
management perspectives

A real problem (“Kills”): replacing some existing services with
new services without impairing operations

3 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Elements of information system architecture

....service2service1 serviceM

M1 M2

Business layer

IT layer

Mn....

Figure: A simple two-layer information system architecture.

4 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Elements of information system architecture

Any information system of an enterprise (consisting of a set D of
departments) is classically described by two architectural layers:

the business layer: the description of the business services
offered by the information system;

the IT layer: the description of the IT modules on which
business services rely on.

In general, the relationship between these two layers is not
one-to-one. A given business service can require any number of IT
modules to be delivered and vice-versa a given IT module can be
involved in the delivery of several business services.

5 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Evolution of an information system architecture

M1 M2 Mn N1 N2 Nn

ES1 ES2 ESM NS1 NS2 NSM

Business layer

Requires

IT layer

Figure: Evolution of an information system architecture.

6 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Evolution of an information system architecture

From time to time an information system may evolve in its
entirety.

Strong impact at the IT layer level, where the existing IT
modules UE = {M1, . . . , Mn} are replaced by new ones in a set
UN = {N1, . . . , Nn′} (in the sequel, we assume U = UE ∪ UN).

This translates to a replacement of existing services (ES) by new
services (NS) ensuring that the impact on the whole enterprise is
kept low, to avoid business discontinuity.

7 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Representation: Graph

oldint

newint

oldser

newser

i

j

k

V

zi

ui

U

vj

W

wk

ell

dept

E

F

B

D

constructional modules

A

8 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Graph

The enterprise consists of:

a set D of departments;

existing services V ;

new services W .

Each service relies on some IT module in U.

The relations between services and modules and, respectively,
departments and services, are denoted as follows:
A ⊆ V × U,
B ⊆ W × U,
E ⊆ D × V ,
F ⊆ D × W .

9 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Graph

We use the graph G = (V , E) to model departments, existing
services, new services, IT modules and their relations.

The vertices are V = U ∪ V ∪ W ∪ D,

the edges are E = A ∪ B ∪ E ∪ F .

This graph is the union of the four bipartite graphs
(U, V , A), (U, W , B), (D, V , E) and (D, W , F) encoding the
respective relations. We remark that E and F collectively induce
a relation between existing services and new services

10 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Actors

Three main types of enterprise actors are naturally involved in the
management of these technological evolutions which are described
below.

1 Business department managers: they are responsible of
creating business value through the new business services.

2 IT project managers: they are responsible for creating the new
IT modules business services.

3 Kill managers: they are responsible for destroying the old IT
modules in order to avoid to duplicate the information system —
and therefore its operating costs — when achieving its evolution.

11 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

The information system architecture evolution

management problem

The department heads want to maximize the value of the
required new services.

The module managers want to maximize the number of
activated new modules according to an assigned schedule

The kill managers want to maximize the number of
deactivated old modules, within a certain kill budget.

12 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Optimization problem

The rational planning of this evolution requires the solution of
an optimization problem

13 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Mathematical Programming

Mathematical Programming (MP) is a formal language used
for modelling and solving optimization problems

Each problem is modelled by means of a list of index sets, a list
of known parameters encoding the problem data (the instance),
a list of decision variables an objective function to be
minimized or maximized, and a set of constraints.

A solution is an assignment of numerical values to the decision
variables. A solution is feasible if it satisfies the constraints. A
feasible solution is optimal if it optimizes the objective function.

14 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Mathematical Programming based approach

Sets:

T = {0, . . . , tmax}: set of time periods;

U: set of IT modules;

V : set of existing services;

W : set of new services;

A ⊆ V × U: relations between existing services and IT modules;

B ⊆ W × U: relations between new services and IT modules;

D: set of departments;

E ⊆ D ×V : relations between departments and existing services;

F ⊆ D × W : relations between departments and new services.

15 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Mathematical Programming based approach

Parameters:

∀i ∈ U ai = cost of producing an IT module;

∀i ∈ U bi = cost of killing an IT module;

∀k ∈ W ck = revenue generated by a new service;

∀t ∈ T Ht = production budget per time period;

∀t ∈ T Kt = kill budget per time period;

∀(i , k) ∈ B βik = monetary value given to new service k by IT
module i .

16 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Mathematical Programming based approach

Decision variables:

∀i ∈ U, t ∈ T uit =

{

1 IT mod. (ES) is ON at t= t
0 otherwise;

∀i ∈ U, t ∈ T zit =

{

1 IT mod. (NS) is ON at t= t
0 otherwise;

∀j ∈ V , t ∈ T vjt =

{

1 old service j is ON at t= t
0 otherwise;

∀k ∈ W , t ∈ T wkt =

{

1 new service k is ON at t= t
0 otherwise.

17 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Mathematical Programming based approach

Objective function. Business value contributed to new services by
IT modules.

max
u,v,w,y,z

∑

t∈T

(i,k)∈B

βikzitwkt .

18 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Mathematical Programming based approach

Constraints.

Production budget (cost of producing new IT modules):

∀t ∈ T r {tmax}
∑

i∈U

ai (zi ,t+1 − zit) ≤ Ht ,

where the term zi ,t+1 − zit is only ever 1 when a new service
requires production of an IT module

Kill budget (cost of killing IT modules):

∀t ∈ T r {tmax}
∑

i∈U

bi (uit − ui ,t+1) ≤ Kt ,

where the term uit − ui ,t+1 is only ever 1 when an IT module is
killed

19 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Mathematical Programming based approach

Module activation: once an IT module is activated, do not
deactivate it.

∀t ∈ T r {tmax}, i ∈ U zit ≤ zi ,t+1.

Module deactivation: once an IT module is killed, cannot
activate it again.

∀t ∈ T r {tmax}, i ∈ U uit ≥ ui ,t+1.

Existing service: if a ES is active, the necessary IT modules
must also be active:

∀t ∈ T , (i , j) ∈ A uit ≥ vjt .

New service: if a NS is active the necessary IT modules must
also be active:

∀t ∈ T , (i , k) ∈ B zit ≥ wkt .

20 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Mathematical Programming based approach

Departments: an existing service can be deactivated once all
departments relying on it have already switched to new services:

∀t ∈ T , j ∈ V
∑

k∈Wj

(1 − wkt) ≤ |Wj |vjt .

Boundary conditions: at t = 0 all IT modules needed by
existing services are active, all IT modules needed by new
services are inactive:

∀i ∈ U ui0 = 1 ∧ zi0 = 0;

∀j ∈ V vj0 = 1 ∧ ∀k ∈ W wk0 = 0.

Boundary conditions: at t = tmax all IT modules needed by the
existing services have been killed:

∀i ∈ U uitmax = 0.

21 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Branch and bound, ampl, cplex

The formulation above belongs to the MINLP class, as a product of
decision variables appears in the objective function and all variables
are binary; more precisely, it is a Binary Quadratic Program (BQP).
This BQP can be solved directly using standard Branch and bound
(BB) based solvers.
All our tests were performed using the AMPL modelling
environment to implement the MP and the state-of-the-art
off-the-shelf CPLEX to solve it.

22 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Cuts

The BB method for for MPs with binary variables performs a
binary tree-like recursive search. At every node, a lower bound
to the optimal objective function value is computed by solving a
continuous relaxation of the problem.

The step of BB which most deeply impacts its performance
is the computation of the lower bound.

To improve the relaxation quality, one often adjoins “redundant
constraints” to the problem whenever their redundancy follows
from the integrality constraints. Thus, such constraints will not
be redundant with respect to the relaxation.

If an inequality is valid for an MP but not for its relaxation, it is
called a valid cut.

23 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Cut: example

24 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Cut: example

25 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Cut: example

26 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Cut: 1

Statement: If a new service k ∈ W is inactive, then all existing
services linked to all departments relying on k must be active.

The statement corresponds to the inequality:

∀t ∈ T , k ∈ W
∑

j∈Vk

(1 − vjt) ≤ |Vk |wkt .

(Remark) We formalize this statement by defining the sets:

∀k ∈ W Vk = {j ∈ V | ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ, k) ∈ F)}.

27 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Cut: 1

28 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Cut: 2

Statement: at any given time period no pair (ES, NS) related to
a given department must be inactive (otherwise the department
cannot be functional).

The statement corresponds to the inequality:

∀t ∈ T , j ∈ V , k ∈ W ∃ℓ ∈ D ((ℓ, j) ∈ E ∧ (ℓ, k) ∈ F)
vjt + wkt ≥ 1

29 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Computational Results

How we carried out our tests:

We look at the CPU time and approximation guarantee
behaviours in function of the instance size, and use these data
to assess the suitability of the method to real application.

Our results were obtained on a 64-bit 2.1 GHz Intel Core2 CPU
with 4GB RAM running Linux.

30 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Computational Results: instances

we randomly generated two sets of 64 instances

a set of small instances to be solved to guaranteed optimality

a set of large instances where the BB algorithm is stopped
either at BB termination or after 30 minutes.

All instances have been randomly generated from a model that
bears some similarity to the real instance data.

The parameters of our model are in three categories:
cardinalities (including all vertex sets), graph density
(including all edge and arc sets), monetary values (including
budgets).

Each of the 64 instances in each set corresponds to a triplet
(cardinality, edge creation probability, monetary value), each
component of which ranges over a set of four elements.

31 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Computational Results: small instances

In order to observe how CPU time scales when solving to
guaranteed optimality, we present 12 plots referring to the small
set, grouped by row.

we plot seconds of user CPU time

for each fixed cardinality, in function of edge creation
probability and monetary value (Fig. 3, first row);

for each fixed edge creation probability, in function of
cardinality and monetary value (Fig. 3, second row);

for each fixed monetary value, in function of cardinality and
edge creation probability (Fig. 3, third row).

32 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Computational Results: small instances

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 2
 3

 4
 5

 6
 7

 8

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

’card_5’

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 2
 3

 4
 5

 6
 7

 8

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

’card_10’

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 2
 3

 4
 5

 6
 7

 8

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

’card_15’

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 2
 3

 4
 5

 6
 7

 8

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

’card_20’

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000

 4 6 8 10 12 14 16 18 20

 2
 3

 4
 5

 6
 7

 8

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

’prob_0.2’

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 4 6 8 10 12 14 16 18 20

 2
 3

 4
 5

 6
 7

 8

 0

 50

 100

 150

 200

 250

 300

’prob_0.4’

 0

 50

 100

 150

 200

 250

 300

 4 6 8 10 12 14 16 18 20

 2
 3

 4
 5

 6
 7

 8

 0
 100
 200
 300
 400
 500
 600
 700
 800

’prob_0.6’

 0

 100

 200

 300

 400

 500

 600

 700

 800

 4 6 8 10 12 14 16 18 20

 2
 3

 4
 5

 6
 7

 8

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

’prob_0.8’

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000

 4 6 8 10 12 14 16 18 20

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0
 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2

’budget_2’

 0
 0.2
 0.4
 0.6
 0.8
 1
 1.2
 1.4
 1.6
 1.8
 2

 4 6 8 10 12 14 16 18 20

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

’budget_4’

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 4 6 8 10 12 14 16 18 20

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

’budget_6’

 0
 200
 400
 600
 800
 1000
 1200
 1400
 1600
 1800
 2000

 4 6 8 10 12 14 16 18 20

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180
 200

’budget_8’

 0
 20
 40
 60
 80
 100
 120
 140
 160
 180
 200

Figure: CPU time when solving small instances to guaranteed optimality.

33 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Computational Results: small instances

the proposed methodology can solve a small instance to
guaranteed optimality within roughly half an hour;

denser graphs and smaller budgets yield more difficult instances.

Sudden drops in CPU time might correspond to infeasible
instances, which are usually detected quite fast

34 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Computational Results: large instances

We plot the optimality gap — an approximation ratio — at
termination rather than the CPU time, which is in this case
limited to 30 minutes.

The optimality gap, expressed in percentage, is defined as
(

100|f ∗−f̄ |
|f ∗+10−10|

)

%, where f ∗ is the objective function value of the

best feasible solution found within the time limit, and f̄ is the
tightest overall lower bound. A gap of 0% corresponds to the
instance being solved to optimality.

35 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Computational Results: large instances

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 10
 11

 12
 13

 14
 15

 16

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45

’card_25’

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4
 0.45

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 10
 11

 12
 13

 14
 15

 16

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

’card_30’

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 10
 11

 12
 13

 14
 15

 16

 0

 1

 2

 3

 4

 5

 6

 7

’card_35’

 0

 1

 2

 3

 4

 5

 6

 7

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 10
 11

 12
 13

 14
 15

 16

 0

 2

 4

 6

 8

 10

 12

 14

’card_40’

 0

 2

 4

 6

 8

 10

 12

 14

 24 26 28 30 32 34 36 38 40

 10
 11

 12
 13

 14
 15

 16

-1

-0.5

 0

 0.5

 1

’prob_0.2’

-1

-0.5

 0

 0.5

 1

 24 26 28 30 32 34 36 38 40

 10
 11

 12
 13

 14
 15

 16

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

’prob_0.4’

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 24 26 28 30 32 34 36 38 40

 10
 11

 12
 13

 14
 15

 16

 0

 2

 4

 6

 8

 10

 12

’prob_0.6’

 0

 2

 4

 6

 8

 10

 12

 24 26 28 30 32 34 36 38 40

 10
 11

 12
 13

 14
 15

 16

 0

 2

 4

 6

 8

 10

 12

 14

’prob_0.8’

 0

 2

 4

 6

 8

 10

 12

 14

 24 26 28 30 32 34 36 38 40

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0

 2

 4

 6

 8

 10

 12

 14

’budget_10’

 0

 2

 4

 6

 8

 10

 12

 14

 24 26 28 30 32 34 36 38 40

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0

 2

 4

 6

 8

 10

 12

’budget_12’

 0

 2

 4

 6

 8

 10

 12

 24 26 28 30 32 34 36 38 40

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

’budget_14’

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 24 26 28 30 32 34 36 38 40

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

’budget_16’

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

Figure: Optimality gap when solving large instances within 30 minutes of

CPU time.

36 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Computational Results: large instances

The proposed methodology is able to solve large instances to a
gap of 14% within half an hour of CPU time at worst, and to an
average gap of 1.18% within an average CPU time of 513s (just
over 8 minutes). target CPU time.

37 / 38

Optimal
technological
architecture
evolutions of
Information

Systems

Vassilis
Giakoumakis,
Daniel Krob,

Fabio Roda, Leo
Liberti

Conclusion

We proposed a model for Architecture Evolutions of Information
Systems

We exhibited computational results showing that an
off-the-shelf solver is capable of reaching a feasible solution
with a satisfactory approximation guarantee within a realistic
timeframe.

Future work: Is the model realistic enough ?

Thank you.

38 / 38

