Discrete search in design optimization

Martin Fuchs

CERFACS, Toulouse, France

in collaboration with Arnold Neumaier, University of Vienna, Austria

October 29, 2010

4 Real-life application

- black box cost function
 - \rightarrow simulation based

- black box cost function
 - \rightarrow simulation based
 - \rightarrow computationally expensive evaluation

- black box cost function
 - \rightarrow simulation based
 - \rightarrow computationally expensive evaluation
 - \rightarrow strong nonlinearities, discontinuities

- black box cost function
 - \rightarrow simulation based
 - \rightarrow computationally expensive evaluation
 - \rightarrow strong nonlinearities, discontinuities
 - \rightarrow hidden constraints

- black box cost function
 - \rightarrow simulation based
 - \rightarrow computationally expensive evaluation
 - \rightarrow strong nonlinearities, discontinuities
 - \rightarrow hidden constraints
- various design choices
 - \rightarrow continuous, discrete, and categorical choices

- black box cost function
 - \rightarrow simulation based
 - \rightarrow computationally expensive evaluation
 - \rightarrow strong nonlinearities, discontinuities
 - \rightarrow hidden constraints
- various design choices
 - \rightarrow continuous, discrete, and categorical choices
 - \rightarrow mixed variables

Problem formulation

$$\min_{\substack{\theta, z}} F(z)$$
s.t. $z = Z(\theta),$
 $\theta \in \mathbf{T}.$

- $F: \mathbb{R}^{n_z} \to \mathbb{R}$ black box
- ${\scriptstyle \bullet}~{\bf T}$ is the domain of possible design choices θ
- Z is the design selection mapping

Problem generalization

$$\min_{\substack{\theta, x}} c^T x$$

s.t. $F(Z(\theta)) \le Ax,$
 $\theta \in \mathbf{T}.$

 ${\scriptstyle \bullet}$ special case c=A=1 gives former formulation

• black box input z substituted by $z = Z(\theta)$

Discrete search space

3 Design optimization

4 Real-life application

Design selection example: discrete case

θ	Thruster	F/N	I_{sp}/s	m_{thrust}/kg
1	Aerojet MR-111C	0.27	210.0	200
2	EADS CHT 0.5	0.50	227.3	200
3	MBB Erno CHT 0.5	0.75	227.0	190
4	TRW MRE 0.1	0.80	216.0	500
5	Kaiser-Marquardt KMHS Model 10	1.0	226.0	330

 \bullet contains specifications of design components and the associated choice variable θ

Design selection example: discrete case

θ	Thruster	F/N	I_{sp}/s	m_{thrust}/kg
1	Aerojet MR-111C	0.27	210.0	200
2	EADS CHT 0.5	0.50	227.3	200
3	MBB Erno CHT 0.5	0.75	227.0	190
4	TRW MRE 0.1	0.80	216.0	500
5	Kaiser-Marquardt KMHS Model 10	1.0	226.0	330

- contains specifications of design components and the associated choice variable $\boldsymbol{\theta}$
- the table mapping $Z: \theta \to (F, I_{sp}, m_{thrust})$ assigns an input parameter vector to a given design point θ

Design selection example: discrete case

θ	Thruster	F/N	I_{sp}/s	m_{thrust}/kg
1	Aerojet MR-111C	0.27	210.0	200
2	EADS CHT 0.5	0.50	227.3	200
3	MBB Erno CHT 0.5	0.75	227.0	190
4	TRW MRE 0.1	0.80	216.0	500
5	Kaiser-Marquardt KMHS Model 10	1.0	226.0	330

- \bullet contains specifications of design components and the associated choice variable θ
- the table mapping $Z: \theta \to (F, I_{sp}, m_{thrust})$ assigns an input parameter vector to a given design point θ
- in general F is a physical model based on $Z({\bf T}),$ rather than on ${\bf T}$

Search space T

• T is the set of all possible designs • T = $T^1 \times T^2 \times \cdots \times T^{n_0}$ • $T^i = \begin{cases} \{1, 2, \dots, N_i\} & \text{in the discrete case,} \\ [\underline{\theta^i}, \overline{\theta^i}] & \text{in the continuous case.} \end{cases}$

Search space ${\rm T}$

T is the set of all possible designs
T = T¹ × T² × · · · × T^{n₀}
Tⁱ = { {1, 2, ..., N_i} in the discrete case, [<u>θⁱ</u>, θⁱ] in the continuous case.
for discrete Tⁱ the design selection mapping provides a finite multidimensional set Zⁱ(Tⁱ), e.g.,

Search space ${\rm T}$

• T is the set of all possible designs • $\mathbf{T} = T^1 \times T^2 \times \cdots \times T^{n_0}$ • $T^i = \begin{cases} \{1, 2, \dots, N_i\} & \text{ in the discrete case,} \\ [\underline{\theta^i}, \overline{\theta^i}] & \text{ in the continuous case.} \end{cases}$ • for discrete T^i the design selection mapping provides a finite multidimensional set $Z^{i}(T^{i})$, e.g., 3 7 2 2 1 6 5 n -8 -6 _4 -2 0 2 4 6

4 Real-life application

• SNOBFIT (fits a quadratic model of the objective function and minimizes this model)

- SNOBFIT (fits a quadratic model of the objective function and minimizes this model)
- Evolutionary algorithms

- SNOBFIT (fits a quadratic model of the objective function and minimizes this model)
- Evolutionary algorithms
- Separable underestimation

- SNOBFIT (fits a quadratic model of the objective function and minimizes this model)
- Evolutionary algorithms
- Separable underestimation
- Splitting based on convex relaxation

- SNOBFIT (fits a quadratic model of the objective function and minimizes this model)
- Evolutionary algorithms
- Separable underestimation
- Splitting based on convex relaxation
- combination with methods for continuous variables

Convex relaxation based splitting: idea

• remember: F is based on $Z(\mathbf{T})$ rather than on \mathbf{T}

Convex relaxation based splitting: idea

 ${\ }$ remember: F is based on $Z({\ }{\bf T})$ rather than on ${\ }{\bf T}$

• for discrete T^i relaxation to the convex hull of $Z^i(T^i)$

Convex relaxation of $Z(\mathbf{T})$

$$\begin{array}{l} \min_{z,v,\lambda} \ c^T x \\ \text{s.t.} \ F(z) \leq Ax, \\ z = (v^1, \dots, v^{n_0}), \\ v^i = \sum_{j=1}^{N_i} \lambda_j^i Z^i(j) \text{ for } i \in I_d, \\ \sum_{j=1}^{N_i} \lambda_j^i = 1 \text{ for } i \in I_d, \\ \lambda_j^i \geq 0 \text{ for } i \in I_d, 1 \leq j \leq N_i, \\ v^i \in [\underline{\theta^i}, \overline{\theta^i}] \text{ for } i \in I_c. \end{array} \right\}$$
 convex

Approximate linear solution

$$\begin{split} \min_{z,x,\mu,v,\lambda} \ c^T x + \varepsilon \|\mu\|_p \\ \text{s.t.} \quad & \sum_{j=1}^{N_0} \mu_j F_j \leq Ax, \\ z &= \sum_{j=1}^{N_0} \mu_j z_j, \\ & \sum_{j=1}^{N_0} \mu_j = 1, \\ z &= (v^1, \dots, v^{n_0}), \\ v^i &= \sum_{j=1}^{N_i} \lambda_j^i Z^i(j) \text{ for } i \in I_d, \\ & \sum_{j=1}^{N_i} \lambda_j^i \geq 0 \text{ for } i \in I_d, \\ & \lambda_j^i \geq 0 \text{ for } i \in I_d, 1 \leq j \leq N_i, \\ v^i &\in [\underline{\theta^i}, \overline{\theta^i}] \text{ for } i \in I_c. \end{split}$$

Splitting

- use the coefficients of the convex relaxation as weights on the minimum spanning tree (MST) of $Z(\mathbf{T})$
- split the MST in two of parts of similar total weight

Splitting

- use the coefficients of the convex relaxation as weights on the minimum spanning tree (MST) of $Z(\mathbf{T})$
- split the MST in two of parts of similar total weight
- Example:

Splitting ctd.

Splitting ctd.

Find a relaxed approximate solution on the current branch.

- Find a relaxed approximate solution on the current branch.
- Pound the relaxed solution \hat{z} to the next feasible point, i.e., $\hat{z}_{\text{round}} := \arg \min_{\{z \in Z(\mathbf{T})\}} \|z \hat{z}\|_2$.

- Find a relaxed approximate solution on the current branch.
- Pound the relaxed solution \hat{z} to the next feasible point, i.e., $\hat{z}_{\text{round}} := \arg \min_{\{z \in Z(\mathbf{T})\}} \|z \hat{z}\|_2$.
- 3 Start neighborhood search from \widehat{z}_{round} .

- Find a relaxed approximate solution on the current branch.
- Pound the relaxed solution \hat{z} to the next feasible point, i.e., $\hat{z}_{\text{round}} := \arg \min_{\{z \in Z(\mathbf{T})\}} \|z \hat{z}\|_2$.
- 3 Start neighborhood search from \widehat{z}_{round} .
- Split on the variable with maximal deviation during Step 3.

- Find a relaxed approximate solution on the current branch.
- Pound the relaxed solution \hat{z} to the next feasible point, i.e., $\hat{z}_{\text{round}} := \arg \min_{\{z \in Z(\mathbf{T})\}} \|z \hat{z}\|_2$.
- 3 Start neighborhood search from \widehat{z}_{round} .
- Split on the variable with maximal deviation during Step 3.
- Select the branch with the best function value in Step 3 for the next iteration.

1 Introduction

- 2 Discrete search space
- 3 Design optimization
- ④ Real-life application

5 Summary

XEUS mission – permanent space-borne X-ray observatory

- ${\scriptstyle \bullet}$ complex design problem, 10 dimensions
- $4 \times 14 \times 6 \times 8 \times 5 \times 20 \times 9 \times 44 \times 30 \ge 3 \cdot 10^9$ discrete choices
- 1 continuous choice variable

Optimization results

- ${\scriptstyle \bullet}$ total mass $m=1566~{\rm kg}$
- ${\, \bullet \,}$ found in $4 \mbox{ out of } 5 \mbox{ runs of } 2500 \mbox{ function}$ evaluations each
- 1 run failed because we found no feasible starting point
- ${\scriptstyle \bullet}$ previous study used ≥ 50000 function calls

1 Introduction

- 2 Discrete search space
- 3 Design optimization
- 4 Real-life application

Summary

- Exploit structural knowledge about the discrete search space.
- Speed up the splitting procedure in branching algorithms.
- Solve successfully higher dimensional real-life design optimization problems.

Visit my website: http://www.martin-fuchs.net