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Design optimization

black box cost function

→ simulation based

→ computationally expensive evaluation

→ strong nonlinearities, discontinuities

→ hidden constraints

various design choices

→ continuous, discrete, and categorical choices

→ mixed variables
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Problem formulation

min
θ,z

F (z)

s.t. z = Z(θ),

θ ∈ T.

F : R
nz → R black box

T is the domain of possible design choices θ

Z is the design selection mapping
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Problem generalization

min
θ,x

cTx

s.t. F (Z(θ)) ≤ Ax,

θ ∈ T.

special case c = A = 1 gives former formulation

black box input z substituted by z = Z(θ)
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Design selection example: discrete case

θ Thruster F/N Isp/s mthrust/kg

1 Aerojet MR-111C 0.27 210.0 200

2 EADS CHT 0.5 0.50 227.3 200

3 MBB Erno CHT 0.5 0.75 227.0 190

4 TRW MRE 0.1 0.80 216.0 500

5 Kaiser-Marquardt KMHS Model 10 1.0 226.0 330

contains specifications of design components

and the associated choice variable θ
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Design selection example: discrete case

θ Thruster F/N Isp/s mthrust/kg

1 Aerojet MR-111C 0.27 210.0 200

2 EADS CHT 0.5 0.50 227.3 200

3 MBB Erno CHT 0.5 0.75 227.0 190

4 TRW MRE 0.1 0.80 216.0 500

5 Kaiser-Marquardt KMHS Model 10 1.0 226.0 330

contains specifications of design components

and the associated choice variable θ

the table mapping Z : θ → (F, Isp,mthrust) assigns an input

parameter vector to a given design point θ

in general F is a physical model based on Z(T), rather than

on T
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Search space T

T is the set of all possible designs

T = T 1 × T 2 × · · · × T n0

T i =

{
{1, 2, . . . , Ni} in the discrete case,

[θi, θi] in the continuous case.
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Heuristic approaches

Snobfit (fits a quadratic model of the
objective function and minimizes this model)

Evolutionary algorithms

Separable underestimation

Splitting based on convex relaxation

combination with methods for continuous
variables
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Convex relaxation based splitting: idea

remember: F is based on Z(T) rather than on T
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Convex relaxation based splitting: idea

remember: F is based on Z(T) rather than on T
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for discrete T i relaxation to the convex hull of Z i(T i)
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Convex relaxation of Z(T)

min
z,v,λ

cT x

s.t. F (z) ≤ Ax,

z = (v1, . . . , vn0),

vi =

Ni∑

j=1

λi
jZ

i(j) for i ∈ Id,

Ni∑

j=1

λi
j = 1 for i ∈ Id,

λi
j ≥ 0 for i ∈ Id, 1 ≤ j ≤ Ni,






convex

combination

vi ∈ [θi, θi] for i ∈ Ic.
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Approximate linear solution

min
z,x,µ,v,λ

cT x + ε‖µ‖p

s.t.

N0∑

j=1

µjFj ≤ Ax,

z =

N0∑

j=1

µjzj ,

N0∑

j=1

µj = 1,

z = (v1, . . . , vn0 ),

vi =

Ni∑

j=1

λi
jZi(j) for i ∈ Id,

Ni∑

j=1

λi
j = 1 for i ∈ Id,

λi
j ≥ 0 for i ∈ Id, 1 ≤ j ≤ Ni,

vi ∈ [θi, θi] for i ∈ Ic.
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Splitting

use the coefficients of the convex relaxation as weights on
the minimum spanning tree (MST) of Z(T)

split the MST in two of parts of similar total weight
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Splitting

use the coefficients of the convex relaxation as weights on
the minimum spanning tree (MST) of Z(T)

split the MST in two of parts of similar total weight

Example:

−8 −6 −4 −2 0 2 4 6

0

1

2

3

1

2

3

4

56

7

Discrete search in design optimization 15/22



Introduction Discrete search space Design optimization Real-life application Summary

Splitting ctd.
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Solver strategy

1 Find a relaxed approximate solution on the

current branch.

Discrete search in design optimization 17/22



Introduction Discrete search space Design optimization Real-life application Summary

Solver strategy

1 Find a relaxed approximate solution on the

current branch.

2 Round the relaxed solution ẑ to the next feasible
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Solver strategy

1 Find a relaxed approximate solution on the

current branch.

2 Round the relaxed solution ẑ to the next feasible
point, i.e., ẑround := arg min{z∈Z(T)} ‖z − ẑ‖2 .

3 Start neighborhood search from ẑround.

4 Split on the variable with maximal deviation
during Step 3.

5 Select the branch with the best function value in

Step 3 for the next iteration.
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XEUS mission – permanent space-borne X-ray observatory

complex design problem, 10 dimensions

4 × 14× 6× 8 × 5 × 20× 9× 44× 30 ≥ 3 · 109

discrete choices

1 continuous choice variable
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Optimization results

total mass m = 1566 kg

found in 4 out of 5 runs of 2500 function
evaluations each

1 run failed because we found no feasible

starting point

previous study used ≥ 50000 function calls
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Summary

Exploit structural knowledge about the discrete

search space.

Speed up the splitting procedure in branching
algorithms.

Solve successfully higher dimensional real-life

design optimization problems.

Visit my website: http://www.martin-fuchs.net
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